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Abstract 

Background: Reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) diagnostic 

tests for SARS-CoV-2 are the cornerstone of the global testing infrastructure. However, these tests 

require cold-chain shipping to distribute, and the labor of skilled technicians to assemble reactions 

and interpret the results. Strategies to reduce shipping and labor costs at the point-of-care could aid 

in diagnostic testing scale-up and response to the COVID-19 outbreak, as well as in future outbreaks. 

Methods: In this study we test both lab-developed and commercial SARS-CoV-2 diagnostic RT-

qPCR mixes for the ability to be stabilized against elevated temperature by lyophilization. Fully 

assembled reactions were lyophilized and stored for up to a month at ambient or elevated 

temperature and were subsequently assayed for their ability to detect dilutions of synthetic SARS-

CoV-2 RNA.  

Results: Of the mixes tested, we show that one commercial mix can maintain activity and 

sensitivity after storage for at least 30 days at ambient temperature after lyophilization. We also 

demonstrate that lyoprotectants such as disaccharides can stabilize freeze-dried diagnostic reactions 

against elevated temperatures (up to 50ºC) for at least 30 days. 

Conclusion: We anticipate that the incorporation of these methods into SARS-CoV-2 diagnostic 

testing will improve testing pipelines by reducing labor at the testing facility and eliminating the 

need for cold-chain shipping.  
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RT-qPCR diagnostics are at the foundation of the global fight against the COVID-19 pandemic, but 

the scale-up, distribution, and administration of these tests in great numbers has proven a great 

logistical challenge. In this work, we demonstrate that fully premixed RT-qPCR reactions for the 

detection of the SARS-CoV-2 virus may be lyophilized and stored for extended periods at ambient or 

elevated temperatures without loss of activity. We anticipate that lyophilized RT-qPCR diagnostic 

tests will allow shipping outside the cold chain, reduce labor at the point of testing, and aid in the 

development of automated testing pipelines. 
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Abbreviations 

RT-qPCR 

 Reverse-transcriptase quantitative PCR 

SuperScriptTM 

Invitrogen SuperScriptTM III One-step RT-PCR Kit 

GoTaq® 

Promega GoTaq® Probe 1-step RT-qPCR 

PrimeScriptTM 

Takara One Step PrimeScriptTM RT-PCR 

NTC 

 No-template control 

LOD 

 Limit of detection 
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Introduction 

The rapid spread of COVID-19 has strained the infrastructure for manufacturing and delivering 

molecular diagnostics across the globe. Material shortages, limited numbers of testing facilities, 

lengthy times to provide results to patients, and both cost and logistics associated with rapid testing 

scale-up all pose challenges to the success of established clinical diagnostic methods for detecting 

viral infections [1]. This is partly because most clinical diagnostic methods rely on reverse 

transcriptase quantitative PCR (RT-qPCR) for detecting viral nucleic acids, which requires the labor of 

skilled technicians and cold-chain storage of reagents. To alleviate challenges associated with viral 

diagnosis, there is a pressing need for testing strategies that are easy-to-use, reduce labor at the 

point-of-care, and are inexpensively deployable to any location. While a suite of novel testing 

technologies have been developed and deployed in the wake of the COVID-19 pandemic [2–4], RT-

qPCR remains the gold standard to deliver highly accurate diagnoses of ongoing viral infection [5]. In 

order to combat the ongoing pandemic and ensure that we have adequate diagnostic responses 

prepared for future threats, we must improve the quality, ease-of-use, and distribution of 

established RT-qPCR-based diagnostics.  

One strategy to enable distribution of preassembled RT-qPCR diagnostic reactions without 

the need for the cold-chain storage is lyophilization (i.e., freeze drying), which would reduce 

distribution and storage costs and labor in the diagnostic lab. Lyophilization is a common strategy to 

confer stability to biological samples and biochemical reactions, enabling the storage of samples as a 

dry powder at ambient temperature for later rehydration [6]. In recent years, lyophilization has been 

used by synthetic biologists to enable cell-free systems for on-demand biomanufacturing, 

biosensing, and educational kits [7–14]. Further, lyophilized in vitro transcription and PCR-based 

detection mixtures have demonstrated superior qualities for providing diagnostics in resource-

limited settings [13,15,16]. To prevent the loss of activity during lyophilization and storage, additives 

referred to here as lyoprotectants can be implemented and optimized to stabilize biological 
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molecules in freeze-dried mixes. The most commonly used lyoprotectants are sugars, ranging from 

nonreducing disaccharides to larger polymeric saccharides, but can also include molecules such as 

osmolytes and sugar alcohols [10,17]. Established mechanisms of protein stabilization are water 

replacement, in which lyoprotectants replace water by hydrogen bonding with proteins to maintain 

native conformation [18,19], and vitrification, in which lyoprotectants trap the protein in a glassy 

matrix, therefore reducing mobility and improving stability [20], Combinations of various 

lyoprotectants have also been found to have synergistic properties [18,21,22]. Many factors play a role 

in choosing an effective formulation for lyophilization, requiring optimization of lyoprotectant 

identity and concentration for each system of interest [23]. 

In this work, we explore the use of lyophilization and lyoprotectants for stabilization and 

long-term storage of fully assembled SARS-CoV-2 RT-qPCR diagnostic reactions. We test the 

tolerance to lyophilization of several commercially available kits and a recently developed non-

commercial mix using the novel synthetic thermostable reverse transcriptase, RTX [24]. We also 

explore stabilization of these lyophilized mixtures with a variety of lyoprotectant formulations and 

concentrations which help preserve fidelity at ambient and elevated temperatures. We find that a 

single RT-qPCR kit validated for COVID-19 diagnostics is highly robust to lyophilization, and can be 

formulated for storage for at least 30 days at up to 37ºC while retaining the ability to detect down to 

50 copies of SARS-CoV-2 RNA. In addition to eliminating the need for expensive and logistically 

challenging cold-chain storage, the pre-mixed reactions can improve result turn-around times and 

reduce the opportunity for reaction assembly error by minimizing operator handling, holding 

promise for improving result quality and consistency [25,26].  Our lyoprotectant optimizations show 

how currently available diagnostic tools can be adapted in order to prepare for pandemic response 

and enable ease of use and reduce distribution challenges while maintaining reaction quality.  

Results 
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In this study, we aimed to use lyophilization to improve the ease-of-use and potential distribution of 

RT-qPCR-based diagnostics. We first benchmark a set of commercial kits used for SARS-CoV-2 

detection against a recently developed synthetic reverse transcriptase mix. We then evaluate the 

tolerance of each of these mixes to lyophilization with a variety of lyoprotectant formulations and 

storage at ambient temperature. Finally, we test the most promising kit under our defined 

conditions with higher lyoprotectant concentrations and expose these mixes to a more rigorous 

regime of elevated temperatures and extended incubation times to demonstrate the viability of this 

method for shipping and long-term storage of these reactions outside the cold-chain. 

 

Benchmarking RT-qPCR kits for SARS-CoV-2 RNA detection 

We first chose a set of RT-qPCR kits for use in COVID-19 diagnostic mixes from different 

manufacturers, including the Invitrogen SuperScriptTM III One-step RT-PCR (SuperScriptTM), the 

Promega GoTaq® Probe 1-step RT-qPCR (GoTaq®), and the Takara One Step PrimeScriptTM RT-PCR 

(PrimeScriptTM) kits for comparison. These kits were benchmarked against reaction mix containing 

the thermostable synthetic reverse transcriptase RTX, which can perform single-enzyme RT-PCR and 

was previously shown to function as the RT component of TaqMan based COVID-19 RT-qPCR 

diagnostic reactions [24,27]. Given the thermostability and general robustness of this enzyme, we 

hypothesized that it may be especially amenable to stabilization by lyophilization and long-term 

storage at ambient or elevated temperatures. Indeed, Escherichia coli cells expressing RTX have 

previously been lyophilized into “cellular reagents” as ready-to-use PCR reagents which require no 

enzyme purification [28]. However, RTX has not been lyophilized in a fully premixed diagnostic 

reaction mix to our knowledge. 
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RT-qPCR was performed using these kits and an RTX/Taq reaction mixture (see Materials and 

Methods) on a dilution series of synthetic SARS-CoV-2 RNA (Twist Biosciences, MT007544.1) and a 

no-template control (NTC). Reaction series were performed using both the N1 and N2 probe mixes, 

which target different regions of the N gene of the SARS-CoV-2 genome (Integrated DNA 

Technologies), to assess performance of these diagnostic setups on various concentrations of 

synthetic target RNA (Figure 1). We found that all reaction mixes performed well using the N1 probe, 

generating a log-linear relationship between target concentration and the cycle in which 

fluorescence can be detected, or the quantitation cycle (Cq), of the diagnostic reaction (Figure 1A, 

C). The Cq value is the critical metric for determining viral RNA concentration in a sample, and thus a 

log-linear relationship between synthetic SARS-CoV-2 concentration and Cq value is an essential 

outcome for a successful testing regime. In contrast, when using the N2 probe mix, the RTX reaction 

mix failed to detect the target RNA except at high concentrations of target RNA (Figure 1B), and thus 

did not yield a log-linear relationship between Cq value and synthetic SARS-CoV-2 concentration 

(Figure 1C). Commercial kits performed well using both N1 and N2 probes. These results show that 

each RT-qPCR formulation using the N1 probe can detect synthetic SARS-CoV-2 RNA at the attomolar 

level, but the N2 probe failed to adequately detect SARS-CoV-2 RNA in the RTX-based mix. Based on 

these results, we proceeded with lyophilization tests using only the N1 probe mix for testing and 

optimizing lyophilization of premixed diagnostic reactions.  
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Figure 1: Benchmarking of RTX SARS-CoV-2 diagnostic reactions against commercial reactions. 
Each column represents the results from SARS-CoV-2 reaction mixes featuring a different RT-qPCR 
mix, including RTX, GoTaq®, SuperScriptTM, and PrimeScriptTM from left to right. (A) Amplification 
curves for each kit with a dilution series of SARS-CoV-2 synthetic genomes using the N1 probe mix. 
All reaction mixes detect SARS-CoV-2 RNA at all concentrations without false positives in the 
absence of target RNA. (B) Amplification curves for each kit with a dilution series of SARS-CoV-2 
synthetic genomes using the N2 probe mix. The RTX mix fails to detect SARS-CoV-2 below 5000 
copies of the target RNA. Each data point represents the average of n=6 experiments, with errors 
bars representing standard deviation. (C) Standard curve of Cq values measured across a 10-fold 
serial dilution of SARS-CoV-2 synthetic genomes from 5 through 50,000 copies for N1 (black) and N2 
(blue) probe mixes. All commercial mixes perform comparably, generating a log-linear relationship 
for both the N1 and N2 probes of template concentration versus Cq value.  In contrast, the RTX 
custom mix performs well for N1 but not N2 probe mixes. 

 

 

Lyophilization of RT-qPCR mixtures to improve stability 

We next tested the amenability of fully-assembled SARS-CoV-2 diagnostic reactions to lyophilization 

using the commercial kits and the homemade RTX mix. To attempt to identify lyophilization 

conditions which stabilized premixed diagnostic reactions, we tested concentration gradients of the 
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commonly used nonreducing disaccharide lyoprotectants sucrose and trehalose, and the large 

polymeric saccharide dextran 70 [10,21,29]. Each of the previously assayed RT-qPCR mixes was 

lyophilized in an SP Scientific Benchtop Pro lyophilizer with N1 primer-probe mix at working 

concentration and with a variety of lyoprotectant formulations (see Materials and Methods). These 

formulations included a concentration gradient of 0-50 mg/mL of trehalose, sucrose, or dextran 

alone, each lyoprotectant at 50 mg/mL in combination with 100 mM of the osmolyte betaine, pairs 

of lyoprotectants mixed together at 20 mg/mL each to test synergistic interactions, and a no 

lyoprotectant control. Lyophilized reactions were then incubated for 14 days at room temperature 

(~23°C). All formulations were tested after 1, 7, and 14 days with 10,000 copies of synthetic SARS-

CoV-2 RNA to ensure ample template for assessing activity of the reactions.  

Each enzyme mix responded in a surprisingly varied manner to lyophilization. Contrary to 

the initial hypothesis, the enzyme mix containing RTX was inactivated by lyophilization under the 

buffer conditions used, with only one reaction displaying any increase in fluorescence after a single 

day of incubation at room temperature and no active reactions after 7 days (Supplementary Figure 

1). Due to the failure of all reactions by day 7, RTX reactions were not assessed after the full 14 days. 

The SuperScriptTM kit fared slightly better under the conditions tested here, with most reactions 

detecting SARS-CoV-2 RNA after one day of lyophilization (Supplementary Figure 2A). However, the 

effectiveness of the reactions rapidly degraded over the course of the incubation, with only 36% and 

32% of reactions successfully detecting SARS-CoV-2 RNA after 7 and 14 days at room temperature, 

respectively (Supplementary Figure 2B-C). PrimeScriptTM responded slightly more robustly to 

lyophilization, with 64% of reactions retaining activity after 14 days (Supplementary Figure 3C). 

While those PrimeScriptTM reactions which maintained activity yielded robust fluorescence activation 

kinetics, the Cq value for these reactions was no longer reliable, yielding highly variable initiation of 

fluorescence despite the consistent amount of template RNA provided (Supplementary Figure 3A-

C). GoTaq® provided the most promising results in our reaction conditions, with all but one (98.6%) 

of the reactions detecting SARS-CoV-2 RNA across all time points tested (Figure 2A, Supplementary 
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Figure 4A-C). Furthermore, GoTaq® reactions maintained consistent Cq values through 14 days of 

incubation (Figure 2B). This combination of a low false negative rate and a consistent Cq value for 

lyophilized reactions at all time points led us to proceed with GoTaq® for the remaining 

lyophilization formulation experiments. 

Regarding lyoprotectants, the initial results of their impact on lyophilized reactions proved 

inconclusive. The Cq value of GoTaq® reactions remained stable regardless of the presence or 

concentration of lyoprotectants (Figure 2B). However, a plot of Cq value versus lyoprotectant 

concentration for all time points of the PrimeScriptTM kit, which had difficulty maintaining fidelity of 

Cq value after lyophilization, reveals a moderately strong negative correlation between 

lyoprotectant concentration and Cq values (Pearson’s r = -0.698) (Supplementary Figure 5). This 

implies that the presence of lyoprotectants may play a role in stabilizing these reactions against 

lyophilization and maintaining fidelity of the Cq value.  Furthermore, GoTaq® reactions incubated for 

14 days displayed increasing final relative fluorescence (RFU) when lyophilized with higher 

concentrations of the three lyoprotectants (Figure 2C). Finally, lyoprotectants are known to be 

especially important in preserving reaction mixtures exposed to elevated temperatures [10]. 

Therefore, we hypothesized that lyoprotection of diagnostic reactions may improve the stability of 

Cq values when reactions are exposed to elevated temperatures and longer incubation times. 
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Figure 2: Fully premixed SARS-CoV-2 diagnostic reaction mixes using the GoTaq® RT-qPCR kit are 
robust to lyophilization and long-term storage at room temperature. For all plots, lyoprotectant 
formulations containing trehalose (purple), sucrose (green), dextran (orange) or a dual lyoprotectant 
mix (gray) are depicted. (A) Results for fully assembled, lyophilized diagnostic reactions using the N1 
probe mix and the GoTaq® commercial reaction mixes after 14 days incubation at ambient 
temperature (~23°C) and inoculation with 10,000 copies of SARS-CoV-2 RNA. Each trace represents a 
single reaction with the stated lyoprotectant. Results for RTX, SuperScript IIITM, and PrimeScriptTM 
can be found in the Supplementary Material. (B) Cq values over time for GoTaq® reactions tested 
with 10,000 copies of synthetic SARS-CoV-2 RNA. Reactions were stable over 14 days under all 
conditions tested, with only one aberrant reaction at 7 days in the presence of 10 mg/mL trehalose. 
(C) Final fluorescent value (RFU) of GoTaq® diagnostic reactions incubated for 14 days is plotted 
against concentration of lyoprotectant. Reactions tested with 10,000 copies of SARS-CoV-2 RNA 
display increased final fluorescent signal in the presence of higher concentration of lyoprotectant.  

 



 

This article is protected by copyright. All rights reserved. 13 

To test this hypothesis, we proceeded with a second lyophilization experiment with longer 

incubation times and higher temperatures. Due to their comparable performance and low reagent 

cost in the GoTaq® reactions, and to reduce the overall number of formulations to be tested, sucrose 

and sucrose/trehalose mixes were chosen as the lyoprotectants in these experiments. Since final 

RFU of GoTaq® reactions incubated for 14 days in the prior experiment continued to increase up to 

50 mg/mL of lyoprotectant (Figure 2C), higher concentrations were tested in this experiment. 

GoTaq® reaction mix was assembled with N1 primer/probe and lyophilized with no lyoprotectant, 

sucrose concentrations of 50, 75, or 100 mg/mL, or with sucrose/trehalose mixes of 20, 30, and 40 

mg/mL each. A set of non-lyophilized control reactions was also included. These reactions were 

incubated at 23°C, 37°C or 50°C for 30 days. After 30 days, reactions were tested with a dilution 

series of SARS-CoV-2 RNA at concentrations ranging from 5-50,000 copies.  

Reactions that were not lyophilized could not survive prolonged incubation at ambient or 

elevated temperatures, and after 30 days none of these reactions retained any activity (Figure 3, 

lower table). In contrast, lyophilization of GoTaq® reactions imparted robust thermostability to the 

reaction mix. After 30 days, reactions incubated at 23°C and 37°C were still capable of detecting 

SARS-CoV-2 RNA at concentrations as low as 5 total copies (Figure 3A, 3B). However, if the limit of 

detection (LOD) is defined as the concentration of template at which >95% of samples containing 

SARS-CoV-2 RNA are identified as positive [30], then the optimal LOD is 5 total copies (1,000 

copies/mL) for non-lyoprotected reactions incubated at 23°C and 50 total copies (10,000 copies/mL) 

for lyoprotected reactions incubated at 37°C (Figure 3A-B, lower table).  While this value for samples 

incubated at 37°C is higher than the LOD of the non-lyophilized CDC assay at 1,000 copies/mL [31], the 

sensitivity of the lyophilized assay could theoretically be brought up to this value by increasing the 

scale of the reaction from 5 μL to 50 μL. In addition, reactions incubated at 23°C or 37°C displayed no 

significant difference in Cq value between the unprotected reactions and the lyoprotected reactions.  
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In contrast, the reactions incubated at 50°C did not generally reach the threshold of 95% 

detection to define a limit of detection [30] except in the 5,000 and 50,000 copy test reactions for the 

non-lyoprotected cases (Figure 3C). Those reactions that did have a definable LOD had significantly 

higher Cq values in the absence of lyoprotectant (black dots) compared to samples with 

lyoprotectant (purple and green dots) (Welch’s two-sided t-test, p = .01 and .0004 for 5,000 and 

50,000 genome copies, respectively), and also retained a higher rate of positive test results at low 

template concentration (Figure 3C). Combined with the results for the 23°C and 37°C samples, these 

results show that lyoprotectants preserved freeze-dried reaction mixes, improving the likelihood of 

SARS-CoV-2 RNA detection and preserving Cq value in samples exposed to higher temperatures. 

 

 

Figure 3: Lyoprotectants are effective at stabilizing lyophilized GoTaq SARS-CoV-2 diagnostic 
reactions exposed to elevated temperatures. GoTaq diagnostic reactions were premixed with no 
lyoprotectant (None), 50, 75, or 100 mg/mL sucrose (Suc50, Suc75, Suc100) or a mixture of 20, 30, or 
40 mg/mL each of sucrose and trehalose (ST20, ST30, ST40) and lyophilized. Reactions were 
incubated for 30 days at (A) 23°C, (B) 37°C, or (C) 50°C to assess stability of reactions exposed to 
elevated temperatures for long periods. Diagnostic reactions were performed on a dilution series 
from 5 to 50,000 copies of synthetic SARS-CoV-2 RNA. Each dot of the dotplot is a Cq value of a 
single reaction, and the columns of the table below each set of dots indicates the percent true 
positive for not lyophilized, lyophilized, and lyoprotected plus lyophilized reactions. Reactions were 
considered successful if they had a Cq value of <40 and a final RFU of >100. Cq values maintained a 
log-linear relationship with template concentration, but the overall success rate for detecting SARS-
CoV-2 RNA (table values below Cq plots) decreased for samples incubated at elevated temperatures. 
While lyoprotectants were not necessary to stabilize reactions incubated at 23°C, they did improve 
stability of reactions incubated at 50°C. Samples which did not successfully detect (no Cq call or Cq 
value >40) SARS-CoV-2 RNA are not depicted as dots in the Cq plots (n = 24 across all formulations 
for each dilution). 
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Discussion 

We demonstrated that lyophilization of pre-mixed COVID-19 RT-qPCR diagnostic reactions enables 

storage at ambient temperatures for extended periods. Lyophilized pre-mixed reactions are useful 

for streamlining dissemination of testing kits to distant locations without the need for cold-chain 

storage, and for reducing point-of-care labor costs by eliminating the need for on-site mixing of 

reagents. Lyophilization of pre-mixed diagnostic reactions may also allow stockpiling of reactions for 

future outbreaks, but experiments on even longer time scales (6 months or greater) are required to 

validate this strategy. Contrary to our initial hypothesis, diagnostic reaction mixes assembled with 

RTX under our reaction conditions were not viable after lyophilization. Instead, after testing three 

additional commercially available RT-qPCR kits, we found that Promega GoTaq® diagnostic reactions 

performed robustly after lyophilization and were capable of surviving long periods after 

lyophilization without cold storage. Finally, we found that lyoprotectants are not necessary for 

preserving these diagnostic reactions at room temperature, but that lyoprotectants are associated 

with improved performance when the reactions are exposed to elevated temperatures. We hope 

that these results will spur the development and distribution of preassembled, lyophilized diagnostic 

reactions to reduce distribution costs and enable streamlined workflows, especially in resource-

limited settings. 
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Materials and Methods: 

Diagnostic reaction assembly 

For commercial reaction mixes, reactions were assembled per the manufacturer’s recommendations 

as laid out in the Promega GoTaq®, Invitrogen SuperScript IIITM, or Takara One Step PrimeScriptTM 

(RR064A) manuals and including 0.5 µL of N1 or N2 probe mix (IDT: 10006713) in a 5 µL reaction. For 

diagnostic reactions using RTX, reactions were assembled including 1X RTX buffer (60 mM Tris-HCl 

(pH 8.4), 25 mM (NH4)2SO4, 10 mM KCl, 1 mM MgSO4), 0.5 µL N1 or N2 probe mix, 0.1 µL RTX (exo-) 

at 0.4 mg/mL, 0.2 µL OmniTaq (DNA Polymerase Technology: 300), 1 µL diluted template, and a total 

reaction volume of 5 µL. Reactions were assembled in Bio-Rad low profile 8-tube strips with optically 

clear caps (Bio-Rad: TLS0801, TCS0803). Reactions were then cycled and read according the 

manufacturer’s recommendations in a Bio-Rad CFX96 qPCR instrument. Cq values were called using 

the nonlinear regression model on the CFX Maestro software. Samples were considered to be 

positive if they reported a Cq value of < 40.  

Lyophilization 

Reactions were assembled as described above and mixed thoroughly with lyoprotectant, briefly spun 

down, and flash frozen. An SP Scientific Benchtop Pro with Omnitronics lyophilizer was prepared by 

bringing pressure down to <100 mTor and temperature to <-80° C. Reactions were transferred to dry 

ice to keep them frozen and caps were removed. Reactions were transferred to the lyophilization 

chamber and the chamber was immediately brought to <100 mTor and < -80° C. Reactions were 

lyophilized overnight and inspected the next day to ensure complete drying. They were then capped 

and incubated at the appropriate test temperature. Reactions were reconstituted using 5 µL of the 

appropriate dilution of SARS CoV2 RNA (Twist: 102019) by pipetting up and down exactly 10 times 

using an Integra Voyager pipette and read in a Bio-Rad CFX96 qPCR instrument as described above. 
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