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Abstract
Background: Characterization of cellular growth is central to understanding living systems. Here,
we applied a three-factor design to study the relationship between specific growth rate and
genome-wide gene expression in 36 steady-state chemostat cultures of Saccharomyces cerevisiae.
The three factors we considered were specific growth rate, nutrient limitation, and oxygen
availability.

Results: We identified 268 growth rate dependent genes, independent of nutrient limitation and
oxygen availability. The transcriptional response was used to identify key areas in metabolism
around which mRNA expression changes are significantly associated. Among key metabolic
pathways, this analysis revealed de novo synthesis of pyrimidine ribonucleotides and ATP producing
and consuming reactions at fast cellular growth. By scoring the significance of overlap between
growth rate dependent genes and known transcription factor target sets, transcription factors that
coordinate balanced growth were also identified. Our analysis shows that Fhl1, Rap1, and Sfp1,
regulating protein biosynthesis, have significantly enriched target sets for genes up-regulated with
increasing growth rate. Cell cycle regulators, such as Ace2 and Swi6, and stress response
regulators, such as Yap1, were also shown to have significantly enriched target sets.

Conclusion: Our work, which is the first genome-wide gene expression study to investigate
specific growth rate and consider the impact of oxygen availability, provides a more conservative
estimate of growth rate dependent genes than previously reported. We also provide a global view
of how a small set of transcription factors, 13 in total, contribute to control of cellular growth rate.
We anticipate that multi-factorial designs will play an increasing role in elucidating cellular
regulation.
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Background
Regulation of cell growth is of crucial importance for the
survival of all living cells. Much effort, therefore, has
focused on understanding the mechanisms that control
how cells achieve balanced growth, e.g. control of the cell
cycle and biosynthesis of cellular building blocks. To date,
DNA microarray technology [1,2] has had a considerable
impact in defining causal relationships between different
growth conditions and the transcriptional response of
cells. A number of previous studies in S. cerevisiae have
focused on the genome-wide transcriptional response of
cells to nutrient limitation [3-5], oxygen availability [6-8]
and growth rate (Table 1).

To identify growth rate dependent genes, two major
requirements must be met. First, the specific growth rate
of the culture (h-1) must be controlled. This is necessary to
eliminate variability that is inherent in dynamic batch cul-
tivation [7,9-11]. The general approach for obtaining con-
stant specific growth rate is through continuous i.e.
chemostat cultivation. Here the specific growth rate is
kept constant by continuously feeding a culture with fresh
nutrients having one limiting reagent at a specific dilution
rate (D). The dilution rate is adjusted to obtain different
specific growth rates. Second, it is also important to meas-
ure gene expression patterns over a range of specific
growth rates. By studying factors in addition to specific
growth rate (e.g. nutrient limitation), growth rate depend-
ent genes that are independent of environmental factors
can be identified.

Previous works have suggested that growth rate has a tre-
mendous influence on the yeast transcriptional program.
Specifically, Regenberg et al. [12] described more than
2400 growth rate dependent genes and proposed a role
for the chromosomal location in the regulation of these

genes. Castrillo et al. [13] adopted a systems biology
approach to investigate the effect of growth rate at the
transcriptome, proteome and metabolome levels. They
identified about 900 genes whose expression is growth
regulated and concentrated, in particular, on the role of
the TOR complex 1. More recently, Brauer et al. [14] deter-
mined that transcript levels of more than one quarter of
all yeast genes are linearly correlated with growth rate.
While growth rate dependent genes have been identified
from single factor studies [12] and two factor designs,
such as growth rate and nutrient limitation [13,14], multi-
factor designs, such as the approach presented here, are
expected to identify growth rate dependent genes that are
more independent of the specific growth conditions.

Here we carried out a three factor design to dissect the role
of growth rate on the transcriptional program of yeast. The
three factors were specific growth rate, nutrient limitation
(carbon/nitrogen limitation), and oxygen availability. For
the specific growth rate, multiple levels, i.e. 0.03, 0.1 and
0.2 h-1 were evaluated. In the context of growth rate stud-
ies, the effect of oxygen availability has not yet been con-
sidered. Beyond identifying growth rate dependent genes
independent of nutrient limitation and oxygen availabil-
ity, we sought to use recently developed systems biology
tools to distinguish transcription factors (TFs) that may
coordinate and regulate the processes that control cellular
growth (e.g. cell cycle period, protein biosynthesis, and
energy metabolism).

Results and discussion
A three-factor design to investigate growth rate dependent 
genes
To study the growth-rate related transcriptional response
in S. cerevisiae CEN.PK113-7D, we applied a systems
approach that integrated transcriptome measurements

Table 1: Studies of growth rate effect on transcriptional response in Saccharomyces cerevisiae

Study Strain Cultivation Mode Limiting Nutrienta O2Availability D (h-1) Array type

Hayes et al. (2002) FY1679b Batch/Chemostat C/N Aerobic 0.1–0.2 Membrane/Glass 
slide

Pir et al. (2006) BY4743c Chemostat C/N Aerobic 0.1–0.2 Affymetrix Yeast 
S98 GeneChip

Regenberg et al. 
(2006)

CEN.PK113-7Dd Chemostat C Aerobic 0.02-0.05-0.1-0.2-
0.25-0.33

Affymetrix Yeast 
S98 GeneChip

Castrillo et al. 
(2007)

FY1679b Chemostat C/N/P/S Aerobic 0.07-0.1-0.2 Affymetrix Yeast 
S98 GeneChip

Brauer et al. (2008) DBY10085d 

DBY9492d 

DBY9497d

Chemostat C/N/P/S/U/L Aerobic 0.05-0.1-0.15-0.2-
0.25-0.3

Agilent Yeast V2 
(Cy3/Cy5)

This Study CEN.PK113-7Dd Chemostat C/N Aerobic/Anaerobic 0.03-0.1-0.2 Affymetrix Yeast 
S98 GeneChip

a C, carbon; N, nitrogen; P, phosphorus; S, sulfur; U, uracil; L, leucine
b Isogenic to S288C
c S288C-derived
d CEN.PK-derived
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with data from protein-DNA interaction networks. A 2 × 2
× 3 factorial design was pursued resulting in 12 different
growth conditions (Fig. 1), which have been investigated
in triplicate. Specifically, steady-state conditions were
chosen to perturb (a) specific growth rate (equal to the
dilution rate D), (b) nutrient limitation, and (c) oxygen
availability. Each factor comprised at least two levels: (a)
D = 0.03/0.1/0.2 h-1, (b) carbon/nitrogen limitation, and
(c) aerobiosis/anaerobiosis. Because the specific growth
rate (μ) equals the dilution rate (D) in our chemostat
experiments, the selected range covers cell doubling time
(T2) between 3.5 and 23.1 h (T2 = ln(2)/μ).

We first collected genome-wide transcription profiles
from each steady-state using the Affymetrix GeneChip
platform. To reduce data dimensionality and explore the
data structure, Principal Components Analysis (PCA) was
applied to the normalized microarray data (Fig. 2). Three
main principal components were observed, comprising
69% of the variance (see Additional file 1). Strikingly, the
PCA projections revealed that the three main principal
components segregate the data along the three factors of
our factorial design. The factor giving the greatest variance
was oxygen availability (O-A split along PC1). The second
largest source of variability was observed for nutrient lim-
itation (C-N split along PC2), followed by dilution rate
(growth rate split along PC3; Fig. 2A–C). While PC1
shows a clear separation between aerobic and anaerobic
conditions, PC2 only distinctly separates the carbon and
nitrogen limited conditions for the aerobic case. This is

probably due to the fact that in the absence of oxygen only
fermentative metabolism is possible, while both respirof-
ermentative (N-limitation) and fully respiratory (C-limi-
tation) metabolism may occur in aerobic conditions. The
third factor, specific growth rate, also shows good group-
ings, although not as distinct as for the other factors (Fig.
2B–D). This is consistent with the transcriptome data
from Castrillo et al. [13], in which C-limited cultivations
were strongly segregated from the other nutrient limited
conditions. Notably, the high reproducibility of the repli-
cates demonstrates the quality of our data.

Functional analysis of the 268 growth rate dependent 
genes
To quantitatively reveal which genes had significantly
changed expression, MicroArray Analysis of Variance
(MAANOVA) was carried out by using mixed-model and
Fs test (see Methods and Additional file 2). This test per-
mitted the discovery of genes showing significant tran-
scriptional changes with respect to each considered factor
(specific growth rate, nutrient limitation and oxygen
availability). Table 2 shows the number of differently
expressed genes for each of the three factors at different
cut-off q-values. At a false discovery rate (FDR) of 2%,
which was selected for further analysis, a total of 268
growth rate dependent genes were identified as signifi-
cantly changed. To group genes with common expression
profiles over the dilution rate range, the selected gene lists
were clustered using hierarchical clustering (Fig. 3). Of the
268 significantly changed genes, 114 genes were up-regu-
lated with increasing growth rate and 154 genes were
down-regulated with increasing growth rate (see Addi-
tional file 3). The significantly changed genes are linearly
correlated (either negatively or positively) with increasing
growth rate (see Additional file 1). Consistent with the
PCA analysis, the factor showing the most prominent seg-
regation was oxygen availability. It is possible that this
result, in part, reflects the distribution of experimental
effort (see Methods).

To determine significantly enriched Gene Ontology (GO)
process terms within the up-regulated and down-regu-
lated growth rate dependent gene clusters, we used the
Saccharomyces Genome Database (SGD)-GO tools (sig-
nificance at P ≤ 0.01; see Additional file 3). Among genes
up-regulated with increasing growth rate, biosynthetic
processes were the most significantly enriched (Table 3).
In particular, genes involved in ribosome biogenesis and
assembly, translation, and protein biosynthesis were over-
represented. Nearly half of the up-regulated genes (53/
114) encoded for components of the ribosome complex.
These results suggest that faster growing cells build bio-
mass more efficiently and are consistent with previous
reports [12-15].

Experimental designFigure 1
Experimental design. Each block represents one of the 12 
possible combinations among the three experimental factors 
(oxygen availability, nutrient limitation and dilution rate). 
Each experiment was carried out in triplicate, therefore a 
total of 36 different cultivations were performed. Dilution 
rate values are given in h-1.
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Among the 154 down-regulated genes, the most over-rep-
resented GO terms were response to stress, carbohydrate
metabolic process, and catabolic process (Table 3). More
specifically, genes encoding proteins involved in ER asso-
ciated protein catabolism (HRD3), vacuole homeostasis
(FAB1, GGA1), ubiquitin cycle (APC9, RTT101, UBC8)
and ubiquitin-dependent protein catabolism (MET30,
RPN4, RPN14, YFL006W) show lower expression levels at
higher specific growth rates. RPN4, for example, regulates

cellular levels of the proteasome [16,17]. While gene
expression required for protein synthesis increases with
increasing growth rate, gene expression required for pro-
tein degradation decreases. It is tempting to speculate that
increased protein degradation processes at lower growth
rates, typically under sub-optimal conditions, is a survival
mechanism designed to more efficiently re-use possible
resources.

PCA projection of samples in the first 3 PC dimensionsFigure 2
PCA projection of samples in the first 3 PC dimensions. Plots A and B show PC dimensions 1 versus 2 as the x- and y-
axis and spot size as PC3 in the z-axis. Plots C and D show PC1 vs PC3 and highlight the segregation due to the dilution rate 
factor in PC3. Color in A and C represents a different combination of these two factors: NO, aerobic nitrogen-limited culture; 
CO, aerobic carbon-limited culture; NA, anaerobic nitrogen-limited culture; CA, anaerobic carbon-limited culture. Colors in B 
and D show the dilution rates 0.03, 0.1 and 0.2 h-1.

A B 
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Hierarchical clustering of growth rate dependent genesFigure 3
Hierarchical clustering of growth rate dependent genes. The columns represent the experiments and the left hand side 
of the cluster refers to the anaerobic (A) dataset, while the right hand side to the aerobic (O) dataset. The columns are 
ordered at increasing dilution rate values (0.03 - 0.1 - 0.2 h-1), as indicated by the triangles at the top of the clusters. The rows 
represent the 268 growth rate dependent genes and the two main clusters of up- and down-regulated genes with increasing D 
are shown. The scale of the color bar is based on z-score.
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Strikingly, 11% of down-regulated genes have kinase
activity (only 2.8% of yeast genes have kinase activity
according to SGD), suggesting a possible role for phos-
phorylation in regulating the growth rate response. In
addition, down-regulated genes having an unknown bio-
logical process (22.7%) or function (35.1%) were over-
represented. The lack of annotation may be a result of
these genes being expressed weakly under the rapid
growth conditions used in most microarray experiments
[12].

To identify metabolites in yeast around which mRNA
expression changes are significantly associated, we
applied the Reporter Metabolite Algorithm [18] (see
Methods). The most significant Reporter Metabolites are
listed in Table 4. These metabolites participate in diverse

metabolic pathways from nucleotide and amino acid
metabolism, to phospholipid synthesis and the pentose
phosphate pathway. Orotate, for example, is involved in
the de novo synthesis of pyrimidine ribonucleotides. A
closer look revealed that URA5, whose gene product cata-
lyzes orotate phosphoribosyl transferase, was among the
significantly up-regulated genes with increasing growth
rate. URA5 is not regulated by pathway intermediates and
our analysis suggests that transcriptional control of this
critical enzyme involved in DNA synthesis helps to mobi-
lize resources necessary for growth. It is striking that ATP,
which participates in more reactions than any other
metabolite [19], is among the most significant Reporter
Metabolites. This result suggests that gene expression of
enzymes involved in ATP production and consumption
reactions is significantly regulated over changes in specific
growth rate. In summary, the Reporter Metabolite results
highlight the broad impact that growth rate has across
metabolism.

Transcription factor control of growth rate dependent 
genes
To identify and score TFs that might regulate the processes
that control cell growth, we scored the significance of
overlap between the 268 growth rate dependent genes and

Table 2: The number of significantly changed genes (MAANOVA 
analysis) at different q-value threshold values

q-value threshold 0.01 0.02 0.03 0.04 0.05

Dilution rate 0 268 494 720 938
Nutrient limitation 373 504 579 642 698
Oxygen availability 1208 1933 2038 2355 2594

Table 3: GO annotation based on the Biological Process ontology for growth rate dependent genes

GO Term Gene hits Cluster frequency P-value

Up-regulated Genes (114)
cellular biosynthetic process 61 53.5% 1.58E-21
translation 51 44.7% 8.27E-21
biosynthetic process 66 57.9% 1.61E-20
macromolecule biosynthetic process 55 48.2% 4.28E-19
cellular protein metabolic process 59 51.8% 3.95E-11
protein metabolic process 60 52.6% 4.11E-11
cellular macromolecule metabolic process 60 52.6% 4.78E-11
primary metabolic process 90 78.9% 7.37E-11
gene expression 62 54.4% 1.29E-10
cellular metabolic process 91 79.8% 4.39E-10
metabolic process 92 80.7% 9.58E-10
cellular process 101 88.6% 8.12E-07
macromolecule metabolic process 77 67.5% 8.86E-07
ribosome biogenesis and assembly 21 18.4% 4.20E-04
ribosomal subunit assembly 8 7.0% 6.90E-04
ribosome assembly 8 7.0% 2.82E-03
ribonucleoprotein complex biogenesis and assembly 21 18.4% 5.59E-03

Down-regulated Genes (154)
cellular carbohydrate metabolic process 18 11.8% 2.90E-04
carbohydrate metabolic process 18 11.8% 1.14E-03
macromolecule catabolic process 22 14.4% 1.86E-03
response to stress 26 17.0% 6.33E-03
catabolic process 24 15.7% 9.30E-03
energy reserve metabolic process 7 4.6% 9.34E-03

Gene hits indicate the number of genes in the clusters of up-/down-regulated genes belonging to that particular GO term; the value is also given as 
percentage (cluster frequency). P-values are provided as a score of significance (cut-off ≤ 0.01).
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known TF target sets [20,21] (Table 5, hypergeometric test
at P < 0.01). In total, this analysis revealed 13 TFs having
significantly enriched target sets (Fig. 4) for genes up-reg-
ulated with increasing growth rate. Fhl1, Rap1, Sfp1, and
Yap5 are involved in regulating ribosomal protein gene
expression. Ace2 and Swi6 participate in cell cycle regula-
tion. Yap1, Yap6, Smp1, and Pdr1 are involved in stress
response and signaling. Bas1 is involved in amino acid
and nucleotide biosynthesis, while Stb4 and Gat3 have
unclear roles. The connectivity of TFs with enriched targets
demonstrates how the global response of growth rate
dependent genes may be controlled (Fig. 4). Sin4, Rap1,
Swi6, and Swi4 appear to coordinate the response by link-
ing protein synthesis, the cell cycle, and the stress
response. No significant TFs were found when the same TF
analysis was performed for the down-regulated genes.

Fhl1, Rap1, and Sfp1 were the TFs with the greatest enrich-
ment of growth-rate dependent target genes (Table 5).
These TFs are all involved in ribosomal protein (RP) gene
transcription. There are 138 RP genes in yeast, and their
expression accounts for more than 50% of the RNA pol II
dependent transcription [22]. Rap1 participates in ribos-
omal gene expression [23-25] and is involved in moving
nucleosomes from a certain region of chromatin in order

to allow Fhl1 and Ifh1 to trigger RP gene transcription
[26-29].

Ace2 and Swi6 are known cell cycle regulators [30] and
our TF enrichment analysis suggests a role for these two
TFs in controlling growth rate, which remains a hypothe-
sis. Swi6 is part of the two heterodimeric transcriptional
regulators SBF (Swi4/Swi6) and MBF (Mbp1/Swi6) [31],
that act in the early cell cycle (G1 phase). Ace2, instead,
plays an important role during the M phase. Previously,
the effect of Ace2 on the length of G1 phase has been
reported by Laabs et al. [32], who demonstrated that a G1
specific delay in yeast daughter cells is due to this TF. Little
is known about Stb4 (SGD classifies Stb4 as having an
unknown biological process): it binds to Swi5 [33] and a
two-hybrid screen [34] found that it binds to Sin3. We
hypothesize that identification of Stb4 as a principal reg-
ulating TF in our study, and the close association of it with
Swi6 and Ace 2 (Fig. 4), may hint at a possible role for
Stb4 in regulating the cell cycle.

Highlighting the importance of both protein biosynthesis
and cell cycle progression in controlling growth rate, Sfp1
was also identified in the TF enrichment analysis. Jor-
gensen et al. [35] suggested that Sfp1 activates RP gene

Table 4: Reporter Metabolite analysis

Reporter Metabolites Number of neighbors P-value

Orotate 3 7.10E-04
D-Mannose 6-phosphate 5 9.71E-04
Spermidine 3 1.68E-03
alpha, alpha-Trehalose 4 3.30E-03
5-Phospho-alpha-D-ribose 1-diphosphate 17 5.15E-03
1-(5'-Phosphoribosyl)-5-amino-4-imidazolecarboxamide 4 5.22E-03
D-Ribose 5-phosphate 18 7.42E-03
Dolichyl beta-D-mannosyl phosphate 7 7.60E-03
FAD 2 9.45E-03
1-Phosphatidyl-D-myo-inositol 4,5-bisphosphate 3 9.99E-03
beta-D-Glucose 3 1.00E-02
ATP 113 1.02E-02
5'-Methylthioadenosine 2 1.05E-02
alpha-D-Glucose 6-phosphate 11 1.19E-02
O-Phospho-4-hydroxy-L-threonine 2 1.26E-02
N6-(L-1,3-Dicarboxypropyl)-L-lysine 2 1.37E-02
Glycogen 4 1.42E-02
Urea-1-carboxylate 1 1.69E-02
(S)-Dihydroorotate 2 1.75E-02
2-Phenylacetamide 1 1.82E-02
Phenylacetic acid 1 1.82E-02
Indole-3-acetamide 1 1.82E-02
Indole-3-acetate 1 1.82E-02
(S)-1-Pyrroline-5-carboxylate 1 1.82E-02
L-1-Pyrroline-3-hydroxy-5-carboxylate 1 1.82E-02
trans-4-Hydroxy-L-proline 1 1.82E-02

Reporter Metabolite analysis [18] identifies metabolites around which the most significant transcriptional changes occur. The number of neighbors 
indicates the number of genes whose products catalyze a reaction involving that particular metabolite. The algorithm took as input the MAANOVA 
analysis referring to dilution rate effect. The P-value gives a measure of significance and all results < 0.02 are reported.
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transcription by influencing the nuclear localization of
Fhl1 and Ifh1. The TOR and PKA pathways, previously
identified [13] as critical in controlling growth rate, partic-
ipate in keeping Sfp1 in the nucleus [36]. Sfp1 also mod-
ulates cell cycle progression in the late G1 phase (Start) by
controlling cell size in eukaryotic cells [37,38]. Cell cycle
progression in the late G1 phase (Start) is dependent on
the attainment of a critical cell size and critical translation
rate [39].

Several identified TFs with significantly enriched targets
are primarily involved in the stress response. Yap1 regu-
lates the expression of oxidative stress response genes
[40]. Chua et al. [41] have indicated that Yap1 overexpres-
sion induces genes involved in translation and tRNA
metabolism. Yap6 is known to have a role in salt tolerance
[42] and recently Steinfeld et al. [43] have indicated a role
in regulation of sugar transport. Pdr1 is a zinc finger tran-
scription factor whose target genes carry out ABC trans-
port, other transport, and membrane lipid and cell wall
biosyntheses [44]. We have previously proposed a role for
Pdr1 in DNA damage response process and showed that
Yap5 and Swi5 targets overlap significantly with Pdr1 tar-
gets in absence of the damaging agent [45].

In summary, the Reporter Metabolite and TF enrichment
analyses both support the conclusion that in yeast
changes in growth rates are associated with the regulation
of protein synthesis, the cell cycle, and the stress response.
For example, four TFs involved in regulation of protein
synthesis genes are identified. In agreement, the Reporter
Metabolite analysis identifies ATP. Thus, genes encoding
products that catalyze reactions involving ATP, and one of
the most energy intensive processes of the cell, are
observed as being significantly changed. In addition,
identification of cell cycle regulators is consistent with
results from Reporter Metabolite analysis suggesting that
regulation of metabolic pathways of DNA synthesis (the
de novo synthesis of pyrimidine ribonucleotides) have sig-
nificant transcriptional changes.

Comparison with previous growth rate studies
Compared with earlier studies on the influence of the spe-
cific growth rate on global transcription, our analysis pro-
vides a much more moderate estimate of the number of
growth rate dependent genes. This is likely due to two
main reasons. First, the three-factor design employed here
de-emphasizes genes that might be significant when oxy-
gen availability is not considered. Second, the statistical
methods and significance thresholds among the studies

Table 5: Transcription factor target set enrichment results

TFs Log10(p-value) Overlap Set1 Set2 Background

Harbison et al. (YPD), p < 0.01
FHL1 -28.44 42 114 213 5636
RAP1 -16.52 42 114 414 5636
GAT3 -9.68 23 114 179 5636
SMP1 -4.45 17 114 180 5636
YAP5 -4.1 16 114 168 5636
PDR1 -3.48 15 114 164 5636

Harbison et al. (Other), p < 0.01
FHL1 (rapa) -27.96 42 114 220 5636
FHL1 (sm) -24.83 44 114 294 5636
FHL1 (H2O2-Hi) -16.35 30 114 189 5636
RAP1 (sm) -13.11 37 114 392 5636
SFP1 (sm) -8.44 18 114 118 5636

Beyer et al. SLL > 4
FHL1 -27.43 51 114 379 5636
RAP1 -20.29 34 114 196 5636
SFP1 -18.9 28 114 129 5636
STB4 -17.91 29 114 153 5636
SWI6 -16 42 114 430 5636
YAP6 -15.16 32 114 242 5636
YAP1 -14.47 35 114 314 5636
ACE2 -10.97 32 114 335 5636
BAS1 -10.64 22 114 147 5636

Target sets defined by Harbison et al. [21] chIP-chip study. p-values < 0.01 for YPD and other growth conditions are indicated (rapa: rapamycin, sm: 
sulfometuron methyl, H2O2-Hi, hydrogen peroxide 4 mM). Sets were also analyzed for Beyer et al. [20] derived target sets using sum of log-
likelihood (SSL) > 4.
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are different. Our previous study [12], for example, found
the largest number of growth rate dependent genes
(~2400). However, that study used a newly developed
consensus clustering algorithm to group similar genes that
correlated with growth rate [46]. As another illustration,
Castrillo et al. [13] identified about 900 growth rate
dependent genes by performing analysis of covariance
(ANCOVA) and applying a q-value threshold of ≤ 0.05 for
significance. At this threshold, their results are consistent
with our findings (978 genes, q-value ≤ 0.05; see Table 2).
The number of genes specifically overlapping between the
work of Castrillo et al. and this study at a q-value threshold
of 0.05 is 315. Using our more conservative cut-off, the
overlap is 119.

Given differences between experimental designs and
approaches for determining growth rate dependent genes,
it is perhaps not surprising that few common genes are
observed among our results and the three previous studies
(see Additional file 1). Specifically, 21 up-regulated genes
and 10 down-regulated genes were shared (Table 6 and 7).
Among the common up-regulated genes, 11 were
involved in translation (mostly RP genes) and 3 in sphin-
golipid biosynthesis (FEN1, SUR4, URA7). Of common
down-regulated genes, 3 had unknown process
(YDR262W, YMR090W, YOL153C) and 4 were involved
in regulation of the enzyme fructose-1,6-bisphosphatase,
Fbp1 (PFK26, VID28, VID30, YLR345W). Despite only a
small overlap of specific genes among studies, signifi-
cantly enriched GO Biological Process terms identified the
same overarching biological changes. Considering the
substantial variation between the different studies, our
multi-factorial dataset is valuable for obtaining robust
answers from queries on the effect of growth on transcrip-
tion of different genes. Due to our multi-factorial design,
our dataset is also valuable for evaluation of e.g. the effect
of nutritional state independent of growth rate and oxy-
gen availability.

Conclusion
By increasing the number of experimental factors, we have
identified a more conservative set of growth-rate depend-
ent genes. Specifically, our analysis has identified 268 spe-
cific growth rate dependent genes. Results of a gene
function analysis were found to be in agreement with pre-
vious studies [12-14]. New insight into the regulation of
growth rate regulated genes has also been provided. Spe-
cifically, 13 TFs have been identified as related to genes
whose transcripts level increased with increasing growth
rate and 8 of these are connected in a map of regulatory
pathways supported by known protein-DNA interactions.
Supported by the Reporter Metabolite analysis, the TFs
that coordinate growth rate dependent genes are primarily
involved in protein synthesis, the cell cycle, and the stress
response. Strikingly, down-regulated genes with increas-
ing growth rate did not show common regulation, likely
due to the high percentage of uncharacterized genes. We
have shown that multi-factor designs, combined with a
systems biology approach, can enhance our knowledge
about yeast responses to growth rate. This approach will
be valuable for studying any other environmental or
genetic factor of interest.

Methods
Strain and chemostat cultivations
The reference laboratory strain S. cerevisiae CEN.PK113-
7D (MATa) [47] was grown in well controlled 2 liter jack-
eted chemostats (Braun Biotech and Applikon) with a
constant working volume of 1.0 liter. Cultivations were
carried out (in triplicates) in aerobic/anaerobic and car-

Network of TFs regulating the genes up-regulated with increasing dilution rateFigure 4
Network of TFs regulating the genes up-regulated 
with increasing dilution rate. Nodes with thicker outlines 
contain the TFs found in our analysis (YAP5, YAP6, SMP1, 
GAT3 and BAS1 do not map into this network). The connec-
tivity among nodes is based on the interactions stored at 
BioGRID database [58] and the interaction types can be 
divided in two groups: (1) genetic interactions, which can be 
detected by dosage rescue, synthetic rescue, synthetic 
growth defect, synthetic lethality, phenotypic enhancement 
and phenotypic suppression (blue edges); and (2) protein 
interaction, detected by affinity capture-MS, affinity capture-
western, reconstituted complex and two-hybrid (green 
edges). See Additional file 3 for details about these interac-
tions. Moreover, nodes are colored according to the expres-
sion levels of the genes encoding the TFs and a grey-red scale 
is used (red color indicates higher expression levels). In this 
network, the TF expression values from experiments at 0.2 
h-1 are depicted. No significant differences in TF expression 
values were observed at different dilution rates (see Addi-
tional file 1). The network was drawn by using Cytoscape 
[59].

Ribosome

Stress and Signaling Cell Cycle
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bon/nitrogen limited conditions, at 30°C with a stirrer
speed of 800 rpm, pH of 5.0 (maintained by automatic
addition of 2 N potassium hydroxide) and dilution rates
of 0.03, 0.1 and 0.2 h-1. Aerobic conditions were main-
tained by sparging the cultures with air (1.0 L min-1) and
the concentration of dissolved oxygen was measured with
Mettler Toledo polarographic electrode. Anaerobic condi-
tions were maintained by sparging the medium reservoir
and the fermentor with pure nitrogen gas (0.5 L min-1).
Moreover, oxygen diffusion was minimized by using nor-
prene tubing and butyl septa. The bioreactors were fitted
with cooled condensers (2 – 4°C) and the off-gas was led
to a gas analyzer (INNOVA and NGA 2000 Rosemount) to
measure the content of CO2 and O2. Steady-state was
reached when at least five residence times had passed
since starting the continuous cultivation and carbon diox-
ide evolution, dry weight measurements, and HPLC meas-
urements of extracellular metabolites were constant.

The experimental work was divided into two efforts. Aer-
obic cultivations were carried out in the laboratory of Jens
Nielsen. Anaerobic cultivations were carried out in the
laboratory of Jack T. Pronk. Considerable effort was
invested in standardizing the strain, growth conditions,
sampling protocols, and analytical procedures. Our
groups previously published a report that concluded that
microarray experiments in our laboratories were excel-
lently comparable [7]. Triplicate cultivations were carried
out for each set of conditions to reduce bias that might
unexpectedly arise and to account for biological variance.

Media
The medium composition was as previously described by
Tai et al. [8]. For N-limited cultivations, residual glucose
concentration in the chemostat was targeted to 17 ± 2 g L-

1. This was to sustain glucose repression at the same level
in all cultivations. The mineral medium composition for

Table 6: Common up-regulated genes among growth rate studies

ORF Gene Name Description

YBL039C URA7 Major CTP synthase isozyme (see also URA8), catalyzes the ATP-dependent transfer of the amide nitrogen from 
glutamine to UTP, forming CTP, the final step in de novo biosynthesis of pyrimidines; involved in phospholipid 
biosynthesis

YBR189W RPS9B Protein component of the small (40S) ribosomal subunit; nearly identical to Rps9Ap and has similarity to E. coli S4 and 
rat S9 ribosomal proteins

YBR191W RPL21A Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl21Bp and has similarity to rat L21 
ribosomal protein

YCR034W FEN1 Fatty acid elongase, involved in sphingolipid biosynthesis; acts on fatty acids of up to 24 carbons in length; mutations have 
regulatory effects on 1,3-beta-glucan synthase, vacuolar ATPase, and the secretory pathway

YDL083C RPS16B Protein component of the small (40S) ribosomal subunit; identical to Rps16Ap and has similarity to E. coli S9 and rat S16 
ribosomal proteins

YDR064W RPS13 Protein component of the small (40S) ribosomal subunit; has similarity to E. coli S15 and rat S13 ribosomal proteins
YDR144C MKC7 GPI-anchored aspartyl protease (yapsin) involved in protein processing; shares functions with Yap3p and Kex2p
YDR321W ASP1 Cytosolic L-asparaginase, involved in asparagine catabolism
YEL040W UTR2 Cell wall protein that functions in the transfer of chitin to beta(1-6)glucan; putative chitin transglycosidase; 

glycosylphosphatidylinositol (GPI)-anchored protein localized to the bud neck; has a role in cell wall maintenance
YER009W NTF2 Nuclear envelope protein, interacts with GDP-bound Gsp1p and with proteins of the nuclear pore to transport Gsp1p 

into the nucleus where it is an essential player in nucleocytoplasmic transport
YGL076C RPL7A Protein component of the large (60S) ribosomal subunit, nearly identical to Rpl7Bp and has similarity to E. coli L30 and 

rat L7 ribosomal proteins; contains a conserved C-terminal Nucleic acid Binding Domain (NDB2)
YKL081W TEF4 Translation elongation factor EF-1 gamma
YLR186W EMG1 Protein required for the maturation of the 18S rRNA and for 40S ribosome production; associated with spindle/

microtubules; nuclear localization depends on physical interaction with Nop14p; may bind snoRNAs
YLR325C RPL38 Protein component of the large (60S) ribosomal subunit, has similarity to rat L38 ribosomal protein
YLR372W SUR4 Elongase, involved in fatty acid and sphingolipid biosynthesis; synthesizes very long chain 20-26-carbon fatty acids from 

C18-CoA primers; involved in regulation of sphingolipid biosynthesis
YML036W CGI121 Protein involved in telomere uncapping and elongation as component of the KEOPS protein complex with Bud32p, 

Kae1p, Pcc1p, and Gon7p; also shown to be a component of the EKC protein complex; homolog of human CGI-121
YML063W RPS1B Ribosomal protein 10 (rp10) of the small (40S) subunit; nearly identical to Rps1Ap and has similarity to rat S3a ribosomal 

protein
YMR318C ADH6 NADPH-dependent medium chain alcohol dehydrogenase with broad substrate specificity; member of the cinnamyl 

family of alcohol dehydrogenases; may be involved in fusel alcohol synthesis or in aldehyde tolerance
YOL040C RPS15 Protein component of the small (40S) ribosomal subunit; has similarity to E. coli S19 and rat S15 ribosomal proteins
YOL120C RPL18A Protein component of the large (60S) ribosomal subunit, identical to Rpl18Bp and has similarity to rat L18 ribosomal 

protein; intron of RPL18A pre-mRNA forms stem-loop structures that are a target for Rnt1p cleavage leading to 
degradation

YPL144W YPL144W Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the cytoplasm; null 
mutant is viable, exhibits shortened telomeres
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the N-limited cultivations was (amounts per liter):
(NH4)2SO4 1 g, KH2PO4 3 g, K2SO4 5.3 g, MgSO4·7H2O
0.5 g, Trace Metal Solution 1 mL, antifoaming agent 0.05
mL and vitamin solution 1 mL. The mineral medium
composition for the C-limited cultivations was (amounts
per liter): (NH4)2SO4 5 g, KH2PO4 3 g, MgSO4·7H2O 0.5
g, Trace Metal Solution 1 mL, antifoaming agent 0.05 mL
and vitamin solution 1 mL. The inlet glucose concentra-
tion was ca. 11 and 25 g L-1 for aerobic and anaerobic
experiments, respectively. Moreover, anaerobic cultiva-
tion medium was supplemented with Tween 80/ergos-
terol solution (1.25 mL/L).

Analytical methods
The concentration of biomass at steady-state was deter-
mined on a dry weight basis by filtering 5 mL of culture
through a pre-weighed 0.45 μm nitrocellulose filter (Gel-
man Sciences, Ann Arbor, MI). The filter was washed with
distilled water, dried in a microwave oven at 150 W for 15
minutes and finally weighed to determine its increase in
dry weight. Culture samples (10 mL) for determination of
extracellular glucose, succinate, glycerol, acetate, ethanol
and pyruvate concentrations were immediately filtered
through a 0.2 μm filter (Osmonics, Minnetonka, MN,
USA) and the filtrate was stored at -20°C for further anal-
ysis. The metabolite concentrations were determined by
high pressure liquid chromatography using an Aminex
HPX87H column (Biorad) kept at 65°C and eluted at 0.6
mL per minute with H2SO4. Pyruvate was detected spec-
trophotometrically by a Waters 486 Tunable Absorbance
Detector at 210 nm. Glucose, succinate, glycerol, acetate
and ethanol were detected by a Waters 410 Differential
Refractometer.

RNA sampling and isolation
Samples for RNA isolation from aerobic cultivations were
taken by rapidly sampling 20 mL of culture into a tube
with 35–40 mL of crushed ice in order to decrease the
sample temperature to below 2°C in less than 10 seconds.
Cells were then centrifuged (4500 rpm at 0°C for 3 min-
utes), instantly frozen in liquid nitrogen and stored at -
80°C until further use. Sampling for RNA isolations from
anaerobic cultivations was performed as described by
Piper et al. [7].

Total RNA was extracted using FastRNA Pro RED kit
(QBiogene, Inc, USA) according to manufacturer's
instructions after partially thawing the samples on ice.
RNA sample integrity and quality was assessed prior to
hybridization with an Agilent 2100 Bioanalyzer and RNA
6000 Nano LabChip kit.

Probe preparation and hybridization to arrays
Messenger RNA extraction, cDNA synthesis and labeling,
as well as array hybridization to Affymetrix Yeast Genome
S98 arrays, were performed as described in the Affymetrix
users' manual [48]. Washing and staining of arrays were
performed using the GeneChip Fluidics Station 450 and
scanning with the Affymetrix GeneArray Scanner.

Microarray gene transcription analysis
Affymetrix Microarray Suite v5.0 was used to generate CEL
files of the scanned DNA microarrays. These CEL files
were preprocessed by using gcrma and affy packages
[49,50] available in Bioconductor. Raw data was back-
ground corrected by using gcrma package and normalized
by using qspline method [51]. Probe summarization was

Table 7: Common down-regulated genes among growth rate studies

ORF Gene Name Description

YOL153C YOL153C Hypothetical protein
YLR345W YLR345W Similar to 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase enzymes responsible for the metabolism of fructoso-

2,6-bisphosphate; mRNA expression is repressed by the Rfx1p-Tup1p-Ssn6p repressor complex; YLR345W is not an 
essential gene

YGR070W ROM1 GDP/GTP exchange protein (GEP) for Rho1p; mutations are synthetically lethal with mutations in rom2, which also 
encodes a GEP

YMR090W YMR090W Putative protein of unknown function with similarity to DTDP-glucose 4,6-dehydratases; green fluorescent protein 
(GFP)-fusion protein localizes to the cytoplasm; YMR090W is not an essential gene

YDR262W YDR262W Putative protein of unknown function; green fluorescent protein (GFP)-fusion protein localizes to the vacuole and is 
induced in response to the DNA-damaging agent MMS; gene expression increases in response to Zymoliase treatment

YGL121C GPG1 Proposed gamma subunit of the heterotrimeric G protein that interacts with the receptor Grp1p; involved in regulation 
of pseudohyphal growth; requires Gpb1p or Gpb2p to interact with Gpa2p

YIL107C PFK26 6-phosphofructo-2-kinase, inhibited by phosphoenolpyruvate and sn-glycerol 3-phosphate, has negligible fructose-2,6-
bisphosphatase activity, transcriptional regulation involves protein kinase A

YGR087C PDC6 Minor isoform of pyruvate decarboxylase, key enzyme in alcoholic fermentation, decarboxylates pyruvate to 
acetaldehyde, regulation is glucose- and ethanol-dependent, involved in amino acid catabolism

YIL017C VID28 Protein involved in proteasome-dependent catabolite degradation of fructose-1,6-bisphosphatase (FBPase); localized to 
the nucleus and the cytoplasm

YGL227W VID30 Protein involved in proteasome-dependent catabolite degradation of fructose-1,6-bisphosphatase (FBPase); shifts the 
balance of nitrogen metabolism toward the production of glutamate; localized to the nucleus and the cytoplasm
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made using only the perfect match (PM) values and
median polish settings [52].

Principal Components Analysis (PCA) was performed in
order to elucidate the relative importance of the three fac-
tors characterizing our experimental design: oxygen avail-
ability, nutrient limitation and dilution rate. To select
genes whose expression levels were related to these fac-
tors, MicroArray Analysis of Variance (MAANOVA) was
performed with a mixed model ANOVA with the fixed fac-
tors 'oxygen', 'nutrient' and 'dilution rate' and a single ran-
dom factor, 'sample', representing the biological
replicates [53]. Among the various F-tests, the so called Fs
was chosen [54] and the q-value method was used to cor-
rect for multiple testing [55], which was shown to be less
conservative than the FDR methodology described by
Benjamini & Hochberg [56]. The threshold of significance
was set at 0.02 for a false discovery rate of 2%. MAANOVA
is available as a package in Bioconductor and details of the
code are given in Additional file 2. Subsequently, in order
to group genes with common expression profiles over the
dilution rate range, the selected gene lists were clustered
using hierarchical clustering (unweighted pair-group aver-
age with a non-centric Pearson correlation based distance)
and the Gene Ontology of the generated clusters was
investigated [57].

Reporter Metabolite analysis
Using the entire gene expression data set, we applied the
Reporter Metabolite Algorithm [18] with a newly reported
genome-scale metabolic model of yeast (Nookaew et al.,
submitted). More specifically, the genome-scale model
was converted to a bipartite undirected graph. In this
graph, each metabolite node has as neighbors the
enzymes catalyzing the formation and consumption of
the metabolite. The transcriptome data were mapped on
the enzyme nodes using the significant values of gene
expression. The normal cumulative distribution function
was used to convert the p-values to a Z-score. Each metab-
olite was assigned the average score of its k neighboring
enzymes, and this score was then corrected for the back-
ground by subtracting the mean and dividing by the
standard deviation of average scores of 10,000 enzyme
groups of size k selected from the same data set. These cor-
rected scores were then converted back to P values by
using the normal cumulative distribution function and
the most significant metabolites, Reporter Metabolites,
were ranked.

Transcription factor enrichment analysis
For the genes that were found to be differentially tran-
scribed due to growth rate, we investigated if the set of up-
and/or down-regulated genes were enriched for regulation
by specific transcription factors. Definitions of transcrip-
tion factor target sets (protein-DNA interactions) were

derived from two different data sources [20,21] at p-value
threshold 0.01 for the Harbison et al. study and sum of
log-likelihood threshold 4 for the Beyer et al. study. The
hypergeometric test was performed for each TF in each of
these 2 set definitions versus the up- and down-regulated
genes and the resulting p-values were Bonferroni adjusted.

Abbreviations
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Saccharomyces Genome Database; TF: Transcription Fac-
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