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Studies dating back to the 1970s established that sequence complementarity

between the anti-Shine–Dalgarno (aSD) sequence on prokaryotic ribosomes

and the 50 untranslated region of mRNAs helps to facilitate translation

initiation. The optimal location of aSD sequence binding relative to the

start codon, the full extents of the aSD sequence and the functional form of

the relationship between aSD sequence complementarity and translation effi-

ciency have not been fully resolved. Here, we investigate these relationships

by leveraging the sequence diversity of endogenous genes and recently avail-

able genome-wide estimates of translation efficiency. We show that—after

accounting for predicted mRNA structure—aSD sequence complementarity

increases the translation of endogenous mRNAs by roughly 50%. Further,

we observe that this relationship is nonlinear, with translation efficiency

maximized for mRNAs with intermediate levels of aSD sequence comple-

mentarity. The mechanistic insights that we observe are highly robust: we

find nearly identical results in multiple datasets spanning three distantly

related bacteria. Further, we verify our main conclusions by re-analysing a

controlled experimental dataset.
1. Introduction
The abundance of different protein species within a single cell can vary by several

orders of magnitude, and multiple points of control are critical for tuning the

expression of individual proteins over such a wide range [1–4]. Transcription

of the gene of interest is a necessary first step in the pathway of gene expression

but, by itself, transcription is insufficient to ensure protein expression; studies in a

variety of organisms have shown that mRNA abundances only modestly predict

protein abundances [4–9]. The magnitude of these correlations remains open to

debate, and part of the lack of a strong relationship between mRNA and protein

abundances is probably a result of differential protein degradation rates and noisy

measurements of both quantities [10]. It is, however, clear that the rate at which

different mRNA species are translated into their protein product is variable

and may be a significant source of variation in protein abundance and a point

of regulation [3,11].

In studies dating back to the 1970s, researchers noted that a thermodynamic

interaction between the 16S ribosomal RNA and the 50 untranslated region (UTR)

of mRNAs is important for overall translation efficiency—defined here as the

number of protein molecules made per mRNA per unit time—by enhancing trans-

lation initiation in prokaryotes [12]. The strength, optimal distance to the start codon

and structural accessibility of this anti-Shine–Dalgarno::Shine–Dalgarno (aSD::SD)
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Figure 1. SD sequence usage is variably defined in the literature and differs between genomes. (a) Several studies report a range of relevant parameters used to
identify the aSD::SD sequence interaction. (1denotes studies that implicitly derive aSD sequences by extrapolating from over-represented UTR motifs; 2denotes studies
that explicitly penalize for non-optimal distances to the start codon). (b) Sequence logos demonstrate that 50 UTRs are highly non-random within a given species,
largely a result of significant purine enrichment. However, the magnitude of this enrichment and the spacing relative to the start codon vary between species
despite widespread conservation in the 30 end of the 16S rDNA.
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sequence interaction all play a crucial role in modulating the

rates of translation initiation and thus protein abundances

[13–17]. More recently, multiple studies have reinforced this

paradigm and continue to elucidate the finer details about the

importance of translation initiation signals, highlighting the

fact that surrounding nucleotides may constrain SD sequence

evolution owing to mRNA structural constraints [18–23].

Much of our understanding about the process of translation

initiation has come from experimental researchers expressing

multiple genetic constructs with slightly varying 50 UTRs

placed upstream of a heterologous gene whose output is easy

to quantify. However, most studies have looked at a relati-

vely small number of such easily quantifiable genes that have

been expressed in a small subset of experimentally tractable

species, often at high levels. Experimental studies present a

well-controlled system to interrogate these mechanisms,

but the degree to which these findings can be extrapolated

more broadly to different genes, species and expression levels

remains largely unknown. Nevertheless, researchers’ ability

to predict translation rates of heterologous genes have continu-

ally improved as more and more detailed experimental data

are generated and incorporated into biophysical models [3,19].

In parallel, a number of different studies have analysed var-

ious facets of translation initiation sequence variation across

bacteria using bioinformatic or computational means, but defi-

nitions about which genes to consider as ‘SD genes’ vary

broadly [3,24–30]. The main differences frequently concern

where to look upstream of the start codon for a putative SD

sequence and what bases of the 16S rRNA sequence to consider

as the aSD sequence when assessing sequence complemen-

tarity to the 50 UTR of mRNAs (figure 1a). Despite their

differences, bioinformatic investigations have consistently

shown that SD sequences occur much more frequently than

random expectation in the 50 UTRs of most species, further

suggesting a large role for aSD sequence complementarity in

regulating translation initiation (figure 1b).

Finally, as genome-scale and high-throughput sequencing

technologies have come of age, a third route of investigation

has become possible. By measuring the translational status

of thousands of different genes within a single experiment, ribo-

some profiling (Ribo-seq) and RNA sequencing (RNA-seq)

technologies can be combined to allow researchers to

determine translation efficiencies across the genome [31].
Application of this technique to multiple organisms has

already enhanced our understanding of translational regu-

lation, stoichiometric protein production, determinants of

elongation speed and genome annotation [11,31–33]. How-

ever, in the context of bacterial translation initiation, several

studies have suggested that the aSD binding strength shows

no discernible relationship with the measured translation effi-

ciency of endogenous genes at the genome scale [11,33,34].

The negative results of these studies may be due to a variety

of non-mutually exclusive factors, including (i) noisy or inac-

curate estimates of translation efficiency from these data,

(ii) suboptimal parameters associated with assessing the

aSD sequence relationship, (iii) difficulty accounting for

the effect of mRNA structures surrounding the start codon

through computational means, (iv) the fact that many

endogenous mRNAs are translationally regulated or present

in operons, and, finally, (v) the lack of a relationship in

these data may be real—requiring researchers to re-think

our understanding of the mechanisms governing translation

initiation in bacteria.

Here, we investigate whether the sequence diversity

of endogenous genes can be leveraged along with ribosome

profiling-based estimates of translation efficiencies to precisely

define the relevant parameters associated with aSD::SD

sequence interaction. Rather than attempt to develop a

comprehensive model to explain as much of the variation

in translation efficiencies as possible, we instead propose a

simpler question: can empirically measured translation

efficiencies help us to better understand the particular

phenomenon of aSD sequence complementarity and its

role in regulating translation efficiencies? Our data-driven

analysis yields definitions for the optimal distance between

predicted aSD sequence binding and the start codon, and

the extents of the aSD sequence itself. We further highlight

a highly conserved nonlinear relationship between aSD

sequence complementarity and translation efficiency of

endogenous genes whereby intermediate complementarity

maximizes translation efficiency downstream genes. We con-

firm these findings in multiple independent genome-scale

and experimental datasets, and in doing so highlight the

robustness of our conclusions while validating that the size

of this effect is greatly enhanced as experimental steps are

taken to reduce error in translation efficiency measurements.
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2. Results
2.1. Deriving translation efficiency measurements from

Ribo- and RNA-seq
For a given mRNA, ribosome density maps derived

from ribosome profiling can be used to illustrate regions

of relatively fast and slow translation. When used in con-

junction with RNA-seq to estimate mRNA abundances, this

ground-breaking technology allows researchers to roughly

quantify relative translation efficiency (RTE) on a per gene

basis for thousands of genes in a single experiment. However,

it is important to note that estimates of RNA abundances and

ribosome occupancies are both error-prone owing to biological

noise as well as the numerous steps in the experimen-

tal process that may introduce systemic bias [35–39]. Thus,

RTE is a particularly noisy approximation, because error is

compounded when dividing two error-prone values. We there-

fore established several quality controls for gene inclusion that

are stricter than those previously used in the literature (see

Materials and methods). Following on the previous work of

others [11,33], we then calculated RTE per gene as

RTEi ¼
RPKMRibo�prof,i

RPKMRNA�seq,i
, ð2:1Þ

where RPKMRibo�seq and RPKMRNA�seq are reads per kilobase

per million mapped reads (RPKM) for a gene, i, obtai-

ned through ribosome profiling and RNA-seq, respectively.

Using the original Ribo- and RNA-seq mappings provided

by three separate studies in rich media for Escherichia coli,
Caulobacter crescentus and Bacillus subtilis we derived mea-

surements of translation efficiency for 2910, 1833 and 2385

genes, respectively (electronic supplementary material,

figure S1) [11,33,40]. While this metric relies on some crucial

assumptions, such as equivalent elongation rates between

genes, prior work has shown that these assumptions are

generally valid [11]; a noise-free RTE metric calculated in

this manner should be highly correlated with ‘true’ transla-

tion efficiencies as we have defined it. We note that we

investigated several variations in the above metric (such as

excluding the beginning and the end of genes, Winsorizing

to limit extreme values, removing the lowest mRNA expres-

sion decile, etc.), but none of these variations led to

distinguishably different results so for the purposes of this

manuscript we opt for the simplicity of equation (2.1)

moving forward.

As others have noted, mRNA structure surrounding

the start codon is known to influence translation initiation,

perhaps playing a dominant role in determining transla-

tion efficiency [2,11,16,21,41]. We confirmed this finding by

showing that log-transformed translation efficiencies in all

three organisms showed highly significant correlations with

the predicted degree of mRNA secondary structure

(DGfolding) in the initiation region (defined here as 230

to þ30 nucleotides relative to the first base of the start

codon, which was labelled þ1; R2 ¼ 0.13, 0.10 and 0.08

for Escherichia coli, C. crescentus and B. subtilis, p , 10242 for

all cases). Given the strength of this correlation (electro-

nic supplementary material, figure S2), we analyse the

residuals from this predictive model (in units of log-scaled

translation efficiency) in order to determine what role, if

any, aSD sequence complementarity has in modulating
translation efficiency

ri ¼ RTEi � dRTEi, ð2:2Þ

where RTEi is the relative translation efficiency of gene i,
and dRTEi is the estimate of RTE for gene i derived from

the regression on DGfolding for each dataset. Put more

simply, the residual RTE value for a gene is the difference

in observed RTE minus the predicted RTE where our predic-

tion is based off of the mRNA structure. We include this step

to alleviate the source of biological variation associated with

cis-structure, but note that these computational predictions

also introduce error due to the—at best—modest correlation

between computationally predicted structures and their

counterparts as they exist in vivo [42]. Later, we show that

all of our primary results remain significant, albeit with

decreased magnitude when we skip this step and instead

investigate RTE values directly.
2.2. Defining the optimal distance to the start codon
and species specific aSD sequences

Using the residual RTE values described in equation (2.2), we

took a systematic approach in order to determine where to

look, in an unbiased manner relative to the start codon, for

the statistical signal of aSD sequence complementarity

under the assumption that the true value of this parameter

should show the strongest correlation between aSD sequence

complementarity and residual RTE values. For each gene, we

calculated the predicted hybridization energy of the core aSD

sequence (50-CCUCC-30) to each sequential 5-mer upstream

of the start codon (figure 2a). Hereafter, we refer directly to

the location (relative to the start codon) as the number of

bases between the fragment analysed and the start codon

(this metric of distance corresponds to the aligned spacing

presented by Chen et al. [14]). We asked how well the aSD

sequence complementarity at a particular location for all

genes performed at predicting residual RTE values via both

linear and third-order polynomial regression.

In figure 2b we show example data for a distance to the

start codon of 27 nucleotides (assessing complementarity

of nucleotides 212 through 28 for each gene). We show

both the first- and third-order fits for the residual RTE data

from E. coli, and find that both correlations are small yet

highly significant (F-test, p , 10216). Further, in figure 2c
we show the adjusted-R2 (R2

adj) resulting from repeating the

correlations shown in figure 2b for each indicated distance

relative to the start codon. We use the R2
adj metric hereafter,

because unlike R2 this adjusted metric penalizes for increas-

ing parameter numbers associated with more complex

third-order polynomial models and thus helps guard against

over-fitting to the data. Despite the relatively small R2
adj

values, the sharpness of this peak shows that there is a

clear and highly significant relationship between aSD

sequence complementarity in the 50 UTR of mRNAs and

translation efficiency. The third-order polynomial model

was slightly more predictive at this stage, so we present our

data in the form of third-order polynomial regressions

hereafter except where otherwise noted.

Our choice of 50-CCUCC-30 as the aSD sequence in

figure 2 was simply to illustrate our methodology by using

the most conserved region of the 16S rRNA tail. In practice,

it is not clear precisely which 16S bases belong to the aSD
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sequence although the 30 tail of E. coli has been experimen-

tally determined to end with 50-. . .CCUCCUUA-30. In order

to see if the data would allow us to recover the expected

aSD sequence, we repeated the above analysis for different

putative aSD sequences extending in the 50 and 30 directions

at different binding locations and observed increasing R2
adj

values and a slight re-positioning of the optimal distance to

the start codon (figure 3a). It should be noted, however,

that this change in the optimal distance is partially an artefact

of our numbering scheme. As we include more 50 bases in the

definition of the aSD sequence, even if the location of optimal

binding for a given mRNA does not change, the ‘distance’

will change based on the fact that it is calculated relative to

the 50 end of the putative aSD sequence (electronic sup-

plementary material, figure S3). In this analysis, we extend

past the known rRNA sequence tail as a control that will

allow us to test the accuracy of our method by determining

whether it is able to uncover the known 30 terminus.
We finally explored a range of variants that include exten-

sions on both ends to determine the optimally predictive aSD

sequence and distance parameters for the given dataset

(figure 3b). Several of these putative aSD sequences produced

similar results, so we selected the shortest sequence among

these candidates (50-ACCUCCUUA-30), but we stress that

our methodology can probably not discriminate these bound-

aries precisely given the small differences in R2
adj values

between putative aSDs with single base additions/deletions.

While the overall correlation coefficient in this best-fitting

model is still modest (R2
adj ¼ 0.041), the significance of this

finding is extremely high ( p,10226), indicating that despite

the potentially large error in RTE estimates, we are never-

theless able to observe a highly significant underlying

relationship. These data further show that although comple-

mentarity to the core aSD sequence shows a roughly linear

relationship with RTE (the third-order model in figure 2c per-

forms only slightly better), the inclusion of flanking sequences
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results in both increasing predictive power as well as increas-

ing nonlinearity in the underlying relationship. Finally, as a

further indicator of the accuracy of this method, it resulted

in a frequently cited aSD sequence of 50-ACCUCCUUA-30,

thus uncovering the experimentally determined 30 terminus.
2.3. The relationship between aSD binding and
translation efficiency

In order to test the generality of our findings for E. coli, we next

tested whether our methodology could produce comparable

results for B. subtilis and C. crescentus. We found that the

50 extensions are similar for the different organisms studied

with B. subtilis showing preference for a slightly longer 50 aSD

extension, a finding that is consistent with prior observations

that the canonical SD sequence in B. subtilis 50 UTRs appears

shifted further upstream of the start codon (figure 1b). We

further found that species-specific 30 extensions to the 16S

rRNA result in enhanced correlations and thus are probably pre-

sent in the processed 16S rRNA (to the best of our knowledge,

the precise 30 16S rRNA terminus for these species is unknown)

and participate in message discrimination for these two organ-

isms (electronic supplementary material, figures S4 and S5).

For C. crescentus the aSD sequence that we obtained from our

data-driven model is 50-CCUCCUUUC-30 while for B. subtilis
the corresponding sequence is the 50 extended 50-UCACCUC

CUUUCUA-30. However, as with E. coli, it is difficult to discern

whether single base additions/deletions to the ends of these

putative aSD sequences are functional.

Despite the vast evolutionary distance between these

species, the functional form of the best-fitting models was
highly similar for all three, showing the highest residual

RTE values for intermediate binding strengths with similar

predictive powers in the third-order model (R2
adj ¼ 0.041,

0.028 and 0.056, for all cases p , 10211; figure 4a). We further

verified that nonlinear models provide a superior fit to

the data—even though R2
adj explicitly punishes models with

more parameters—via the Akaike information criterion

(AIC), a stringent model selection metric used to judge

the relative quality of model fits while explicitly penalizing

for parameter number (electronic supplementary material,

figure S6).

In order to more clearly show the magnitude of the

observed effect—and for strictly illustrative purposes—we

split the data for each organism into equally sized quintile

bins (i.e. the 20% of genes with the highest aSD sequence

complementarity, through to the 20% with the lowest). Nota-

bly, treating the data this way involves no model fitting, and

in doing so we observe that (i) the average gene which binds

the aSD sequence at the intermediate-to-strong binding

strength level shows a 30–50% increase in translation effi-

ciency compared with an average gene that binds the aSD

very weakly (figure 4b) and (ii) the strongest binding quintile

of genes exhibits either decreased or equivalent translation

efficiency compared to the bin with intermediate-to-strong

aSD binding strength. This suggests that mRNAs that contain

sequences that bind too strongly to the aSD sequence may

actually show reduced translation efficiency, a point that

has support from several prior studies in the literature work-

ing with experimental systems [43,44]. We note, however,

that the optimal sequence complementarity bin for B. subtilis
is larger than the optimal bin for E. coli and C. crescentus. This

variation may be a result of true underlying differences
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Figure 5. (a,b) Validation of findings in independent E. coli ribosome profiling datasets. Scatter plot and quintile analysis for independent E. coli datasets as in
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trends and stronger correlation, presumably owing to a reduction in measurement error.
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between the translation initiation mechanisms between these

distantly related species, or a function of the fact that the

B. subtilis aSD sequence is much longer, resulting in a broader

range of sequence complementarity values than is observed

for the other species.

To test the robustness of the above findings to some of our

previous assumptions, we repeated the analysis from figures

3 and 4 by interrogating log-transformed RTE values directly.

Although cis-mRNA structure is thought to be an important

regulator of translation initiation, we are faced with the rea-

lity that our computational predictions of structural stability

are rough approximations of in vivo structures, and therefore

may introduce further error and biases into our measure-

ments. Nevertheless, we observed very similar results for

all three organisms in terms of the optimal aSD sequence

and distance (electronic supplementary material, figure S7)

as well as the functional form of the best-fitting model (elec-

tronic supplementary material, figure S8). The fact that the

significance of our results is improved when removing

the effect of mRNA structure provides further evidence that

the true magnitude of the aSD sequence complementarity

effect may be even further enhanced were we able to more accu-

rately predict—and control for—the structural component of

this relationship.

Given recent concerns in the literature about the possibility

of biases arising from the size selection step of prokaryotic

ribosome profiling studies, we analysed two further E. coli
datasets (n ¼ 1278 and 1321) from an independent laboratory

that were generated in such a way as to purportedly minimize

potential sources of error [37]. After accounting for mRNA

structure as before (R2 ¼ 0.11, p,10233 for both datasets), we
observed nearly identical results to the previous E. coli dataset

(figure 5; electronic supplementary material, figure S6). For

both replicates, the 50-ACCUCCUUA-30 aSD sequence at a

distance of 25 provided the best fit to the data, with corres-

ponding R2
adj values of 0.06 and 0.07 for the best-fitting

third-order polynomial and effect sizes of 45% and 50%.

While illustrating the robustness of our results for a given

organism across multiple independent datasets, this analysis

also highlights the sensitivity of R2
adj to measurement noise.

Although we observed generally low, albeit highly significant,

R2
adj values in the previous analyses, we saw a 50% increase in

predictive power using the same modelling approach when

applied to these new data while the effect size remains rela-

tively insensitive to this scatter. Indeed, in these data, the

correlation between aSD sequence complementarity and

residual RTE is nearly as large as the correlation between

mRNA structure and RTE supporting previous observa-

tions of a strong role for the aSD sequence in enhancing

translation initiation.

Finally, given the propensity of prokaryotic genes to occur

in operons, we repeated our analysis for all five datasets (using

the previously discovered organism specific aSD and distance

parameters) by splitting genes up according to whether they

are predicted to be first in a transcription unit or in the

middle/end (see Material and methods). Our results were vari-

able for the different organisms, with our model-fitting

procedure resulting in substantially increased predictive

power for genes in the middle/end of operons for the E. coli
datasets, whereas the opposite phenomenon was evident

in the C. crescentus and B. subtilis data (electronic supplemen-

tary material, figure S9). Nevertheless, all correlations were
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Figure 6. Validation of principal findings in non-ribosomal profiling based datasets. (a) Genome-wide data from Taniguchi et al. [4] show a significant relationship
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p,10210 for both cases). Quintile analysis shows a large effect size as well as a plateau or slight decrease for the quintile with the largest degree of aSD sequence
complementarity.
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highly significant and the third-order polynomial model—

having a maximum value for intermediate aSD sequence

complementary—resulted in larger R2
adj values compared

with linear models for all datasets, further illustrating the

robustness of this finding.

2.4. Translation efficiency in other datasets
To make sure that our observations are not a result of

unknown systemic bias in the ribosome profiling-based

method of calculating RTE, we turned to two separate data-

sets. First, we used an independent dataset from Taniguchi

et al. [4], who estimated protein production per mRNA from

the green fluorescent protein (GFP)-tagged single-cell protein

distributions for 1018 E. coli genes (see Materials and methods

for our quality control procedures) [4]. Using their data,

we performed the same analysis as above and again observed

nearly identical results to those seen in figure 4 for E. coli.
In other words, the data exhibit a maximum at intermediate-

to-strong aSD sequence complementarity (figure 6a; electronic

supplementary material, figure S10). When we limit our

analysis of this dataset to genes with the highest signal-

to-error ratio (specifically, the top 50% as calculated by

Taniguchi et al. [4]), the magnitude of the R2
adj gets larger

with 50-ACCUCCUUA-30 sequence complementarity at a

spacing of 25 predicting residual RTE with an R2
adj of 0.075

( p , 1026) (electronic supplementary material, figure S10).

Finally, although our interest here is in the relationship

between aSD sequence complementarity and the translation

efficiency of endogenous genes, we further verified our main

conclusions using a controlled experimental dataset [22].
Kosuri et al. [22] measured the strength of 111 ribosome bind-

ing sites (RBS) by creating synthetic constructs whereby

RBS/promoter combinations drove expression of a down-

stream GFP reporter (see Material and methods). For each

RBS, the protein produced per mRNA, averaged across the

different promoter constructs, is an indicator that we will

again refer to as RTE for simplicity. For these data, we did

not remove the effect of mRNA structure, because each RBS

data point represents an average across multiple independent

mRNA species (derived from different upstream promoter

sequences), and because the coding sequence remains

unchanged. Alterations in 50 structure between these different

constructs are still possible, but the effect is probably dimin-

ished compared with the other studies and difficult to

reliably assess computationally. We nevertheless observed

that a third-order polynomial model again provided a better

fit to the data than a first-order linear model (R2
adj ¼ 0.37 and

0.316, respectively, p , 10210 in both cases; figure 6b; electronic

supplementary material, figure S10). We also observed that the

intermediate binding quintile produced RTE values 85%

higher than the weakest binding quintile, and observed a

plateau or slight decrease in RTE for the strongest bind-

ing quintile of RBS sequences. This provides further support

for our conclusion that translation efficiency is maximized at

intermediate levels of aSD sequence complementarity and

serves as an independent validation of our genome-scale find-

ings. The large R2
adj values that we observed also provide

strong empirical support for the hypothesis that some combi-

nation of error-prone mRNA structure prediction and error

in the calculated RTE values strongly limit the observed R2
adj

values in the genome-wide analyses, while the general trends
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Figure 7. Model explaining why translation efficiency may be maximized for mRNAs with intermediate aSD sequence complementarity. The competing processes of
initiation complex assembly and transition into elongation select for and against, respectively, strong aSD binding to mRNAs resulting in maximal translation effi-
ciency for sequence with intermediate binding strength.
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and conclusions remain robust and are supported by this

experimental dataset.
9

3. Discussion
Our work illustrates that there is a strong relationship between

aSD sequence complementarity to the 50 UTR of mRNAs

and the translation of downstream endogenous genes. Specifi-

cally, we demonstrate that after accounting for the effects of

mRNA structure: (i) aSD sequence complementarity to

mRNA is predictive of translation efficiencies for endogenous

genes within a relatively narrow window relative to the start

codon, which can be empirically determined on a per-

organism basis; (ii) slight changes in the putative aSD sequence

significantly alter the statistical conclusions, allowing us to

determine a data-driven definition of the optimal aSD

sequence for each species; and (iii) intermediate aSD sequence

complementarity maximizes the translation efficiency

of downstream genes in all datasets that we encountered

including well-controlled experimental data.

Our study complements and extends the experimental

study of Vimberg et al. [44], who showed similar patterns

of decreasing translation efficiency for experimentally

manipulated genes with extended aSD sequence complemen-

tarity [44]. While it is possible that native sequences do not

typically have strong sequence complementarity and that

this effect would thus only apply to a small range of artificial

gene constructs, we show here that a substantial number of

genes from each genome actually fall within the regime

decreased translation efficiency owing to the strength of

their aSD sequence complementarity. Overall translation effi-

ciency appears to be maximized at intermediate levels of

complementarity between the aSD sequence and mRNA,

possibly as a result of competing processes governing the effi-

ciency of initiation complex assembly and the transition to

translation elongation (figure 7)—as originally articulated

by Komarova et al. [5,43–45]. Alternatively, rapid loading

of ribosomes on a single mRNA may cause ribosomal queu-

ing, and potentially result in premature termination or

frame-shifting as ribosomes unproductively stall—thus

decreasing overall ribosomal throughput on a given mess-

age [46]. More accurate experimental and computational

protocols that limit sources of error and allow for more pre-

cise mapping of ribosome locations may fully resolve these

and other issues.

Many previous bioinformatic and experimental studies

either implicitly or explicitly assume a continual increase in
translation efficiency with increasing aSD sequence comple-

mentarity [3,11,26]. One possible reason for this discrepancy

is that many experiments may not observe a drop-off in effi-

ciency at high levels of aSD sequence complementarity

because they fail to access the full range of sequence diversity

capable of binding to the 16S tail. We show here that mRNAs

with perfect sequence complementarity to the core aSD

sequence appear to translate just fine (figure 2b, linear fit).

However, when considering the fact that sequence binding

beyond the core aSD sequence appears to occur in all of these

species, perfect complementary becomes detrimental as it

begins to include base pairing to these flanking sequences.

Our goal here has not been to develop a comprehensive

model to predict translation efficiencies measured by ribosome

profiling, but rather to ask whether the sequence diversity and

translation efficiency measurements for thousands of native

genes can provide insights into the basic mechanisms of

initiation. It is nevertheless surprising that the predictive

power of the aSD::SD relationship is so low given that the

aSD sequence is so highly conserved across nearly all bacterial

species, and experimental investigations have seen large

changes in protein output when modulating 50 UTR sequence

binding to the aSD sequence [3]. However, as we have stres-

sed throughout, we note here again that our findings

probably represent a lower bound on the predictive power of

this interaction for several reasons. Genome-scale metrics are

subject to both technical and biological noise, and translation

efficiency as a metric will particularly suffer from this noise

due to error-propagation. Further, mRNA folding around the

start codon is known to exert a large effect on translation effi-

ciencies and computationally predicted structures are rough

approximations of the true mRNA structure [42]. It is thus

reasonable to assume that these sources of noise contribute to

lowering the expected ‘perfect’ correlations far below 1.0 as

has been observed for other systems [10]. Despite these con-

cerns, the underlying relationship that we observe is strong

enough to show robust, statistically significant correlations in

all datasets that we investigated. In the most controlled dataset

that we analysed, a third-order model of aSD sequence comple-

mentarity explained roughly 40% of the observed variance in

translation efficiency within an experimental system where

the structure surrounding the start codon should be relatively
similar across different constructs on account of the same

coding sequence being expressed.

In addition to measurement noise and other caveats listed

above, predicting the translation efficiency of endogenous

genes poses a number of other unique challenges that contrib-

ute to low correlations. The location of transcription start sites
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relative to the start codon is variable, and experimentally

measured 50 UTRs are often shorter than 30 bases (and some-

times far longer). Further, a number of important genes

such as ribosomal proteins are known to be regulated at the

level of translation by various mechanisms that obscure statisti-

cal signal and which act in addition to the general patterns that

we are trying to study. On top of all these limitations, we

are also aware that translation efficiency may be modulated

by differential elongation and termination in a non-trivial

manner and that even within the realm of translation initiation

other mechanisms such as the binding of ribosomal protein S1

may further modulate initiation efficiencies. Investigating

the full range of possible contributions from each of these

effects is far beyond the scope of our study, but doing so

in the future will be valuable for better understanding

translational regulation.

A better understanding of the rules governing translation

initiation and translation efficiency stemming from this

systems-biology approach has the practical potential to

enhance our ability to design and engineer optimal protein

expression systems for a host of biotechnological purposes.

Particularly, orthogonal ribosome systems consisting of 30S

subunits with altered aSD sequences (and corresponding

mRNA sequence preferences) are an increasingly used tool

in the synthetic biology community [47,48]. The effect that

expression of these ribosomes has on endogenous genes gov-

erns their orthogonality, and predicting these effects based on

the results that we show here may form an important part of

rationally designing optimal systems that balance orthogon-

ality against native genes and high expression of target

genes [32].

Continued development and application of the ribosome

profiling technique and associated technologies to diverse

organisms will be critical for clarifying a number of outstand-

ing questions in the field of translation and advancing our

understanding of less well-understood species. While detailed

experimental studies that systematically express and measure

heterologous constructs remain the gold standard for study-

ing sequence-based control of gene expression, we show here

that genome-scale approaches combining RNA sequencing

and ribosome profiling of native genes can provide valuable

insights into these same mechanisms—making this approach

particularly attractive for species with less established

experimental protocols. Studying the sequence effects on trans-

lation in endogenous genes thus provides a valuable and

complementary approach to long-standing experimental and

bioinformatic investigations.
4. Material and methods
4.1. The data and relative translation efficiency
We downloaded ribosome profiling reads and correspond-

ing RNA-sequencing reads forE. coli, Caulobacter crescentus
and Bacillus subtilis [11,33,40]. We used the original research-

ers mapping of sequence reads to the respective genomes

(.wig files) and removed genes with coverage below 25%

in either the RNA-seq or ribosome profiling datasets in

order to enrich for high-confidence measurements. We also

removed any gene shorter than 30 codons as well as poten-

tially misannotated genes with zero ribosome profiling

reads to the first 10 nucleotides. For all remaining genes,
we calculated translation efficiency for each gene as the

RPKM in the Ribo-seq dataset divided by the RPKM in

the RNA-sequencing dataset. We separately compiled two

further datasets for E. coli, subjecting them to the same pipe-

line as above [37]. We settled on this approach as it is far

more strict in data inclusion criteria than previous studies

(which should partially limit noise in RTE measurements)

while still providing reasonably large numbers of genes

for analysis.

We further use two experimental datasets to independently

validate our conclusions. The first from Taniguchi et al. [4] used

single-cell distributions of protein counts to estimate the pro-

teins produced per mRNA from fitted gamma-distributions

of single-cell expression [4]. From the original dataset of 1018

genes we remove four from our analysis for quality control

(i.e. coding sequences which are not a multiple of 3, do not

have a ‘product’ annotation, contain internal stop codons,

etc.). Because estimates for translation efficiency in this dataset

were based on model fitting under the assumption of gamma-

distributed protein concentrations, we analysed the subset of

proteins (n ¼ 717) for whom the probability of gamma fit

was greater than 95%. For clarity, we maintain the label of

RTE to describe these data but stress that their derivation is

unrelated to ribosome profiling-based estimates of translation

efficiency and that RTE in this context has a slightly different

interpretation [4].

We also downloaded experimental data from recombi-

nant gene expression in E. coli [22]. Each of 110 different

ribosomal binding sites (RBSs) were characterized using

FLOW-Seq (a method that combines fluorescence-activated

cell sorting and high-throughput DNA sequencing) and can

be described by their average protein levels across different

promoters divided by the average mRNA levels (roughly

equivalent to RTE when calculated for the same protein;

from their initial data we exclude the ‘Dead-RBS’ construct

because its short length is prohibitive to our analysis). Here

we analyse this ‘mean.xlat’ data (as described in their sup-

porting tables of [22]) as a measure of relative translation

efficiency. As before, for ease of language, we continue to

refer to this as RTE but note the slight differences in interpret-

ation. Rather than subtracting out the effect of mRNA

structure as in the previous datasets, we simply provide

regressions on this raw data here because (i) the downstream

gene is the same (and thus structure is mostly preserved

between constructs), and (ii) each promoter will introduce

slightly different sequences upstream of the RBS but their

structural effects of this introduction should be accounted

for in the averaging process.
4.2. Gene classification and quantification of aSD
binding strength

All calculations of RNA folding were performed using the

RNAfold method from ViennaRNA with default par-

ameters [49]. Estimations of cis-structure were based on

calculated folding energies for the 230 toþ30 nt region relative

to the start codon (‘A’, ‘T’, ‘G’ are basesþ1,þ2 andþ3, respect-

ively). RNA::RNA hybridizations were performed using the

RNAcofold method with default parameters. For each gene,

we iterated through all x-mers (where x is the length of the

putative aSD sequence) upstream of the start codon in order

to capture 14 hybridization events.
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4.3. Operon predictions
We used predicted operons from the Database of Prokaryotic

Operons [50]. From these data tables, we classified each gene

according to whether it is predicted to occur first within a

transcription unit or whether another gene precedes it

within a transcription unit, regardless of the distance.

4.4. Statistics and code sharing
All code used to perform translation efficiency measure-

ments, as well as all statistics were written using custom

scripts in PYTHON that are included in the electronic sup-

plementary material. All regression models and statistics

(including R2, R2
adj and AIC) were performed using the
statsmodels package from PYTHON; reported p-values in all

regressions are based on the F-test. Code and necessary

data to recreate figures are available at https://github.com/

adamhockenberry/OpenBiology_2016.
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Blüthgen N. 2013 Efficient translation initiation
dictates codon usage at gene start. Mol. Syst. Biol.
9, 675. (doi:10.1038/msb.2013.32)

19. Espah Borujeni A, Channarasappa AS, Salis HM.
2014 Translation rate is controlled by coupled trade-
offs between site accessibility, selective RNA
unfolding and sliding at upstream standby sites.
Nucleic Acids Res. 42, 2646 – 2659. (doi:10.1093/
nar/gkt1139)

20. Goodman DB, Church GM, Kosuri S. 2013 Causes
and effects of N-terminal codon bias in bacterial
genes. Science 342, 475 – 479. (doi:10.1126/science.
1241934)

21. Hockenberry AJ, Sirer MI, Amaral LAN, Jewett MC.
2014 Quantifying position-dependent codon usage
bias. Mol. Biol. Evol. 31, 1880 – 1893. (doi:10.1093/
molbev/msu126)

22. Kosuri S, Goodman DB, Cambray G, Mutalik VK, Gao
Y, Arkin AP, Endyd D, Church GM. 2013
Composability of regulatory sequences controlling
transcription and translation in Escherichia coli. Proc.
Natl Acad. Sci. USA 110, 14 024 – 14 029. (doi:10.
1073/pnas.1301301110)

23. VK Mutalik et al. 2013 Quantitative estimation of
activity and quality for collections of functional
genetic elements. Nat. Methods 10, 347 – 353.
(doi:10.1038/nmeth.2403)

24. Chang B, Halgamuge S, Tang SL. 2006 Analysis of
SD sequences in completed microbial genomes:
Non-SD-led genes are as common as SD-led
genes. Gene 373, 90 – 99. (doi:10.1016/j.gene.2006.
01.033)

25. Ma J, Campbell A, Karlin S. 2002 Correlations
between Shine – Dalgarno sequences and gene
features such as predicted expression levels and
operon structures. J. Bacteriol. 184, 5733 – 5745.
(doi:10.1128/JB.184.20.5733-5745.2002)

26. Na D, Lee S, Lee D. 2010 Mathematical modeling of
translation initiation for the estimation of its
efficiency to computationally design mRNA
sequences with desired expression levels in
prokaryotes. BMC Syst. Biol. 4, 71. (doi:10.1186/
1752-0509-4-71)

27. Nakagawa S, Niimura Y, Miura Ki, Gojobori T. 2010
Dynamic evolution of translation initiation
mechanisms in prokaryotes. Proc. Natl Acad. Sci.
USA 107, 6382 – 6387. (doi:10.1073/pnas.
1002036107)

http://https://github.com/adamhockenberry/OpenBiology_2016
http://https://github.com/adamhockenberry/OpenBiology_2016
http://https://github.com/adamhockenberry/OpenBiology_2016
http://dx.doi.org/10.1038/nature03842
http://dx.doi.org/10.1126/science.1170160
http://dx.doi.org/10.1126/science.1170160
http://dx.doi.org/10.1038/nbt.1568
http://dx.doi.org/10.1126/science.1188308
http://dx.doi.org/10.1093/nar/gku126
http://dx.doi.org/10.1093/nar/gku126
http://dx.doi.org/10.1038/nbt1270
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1038/nature10098
http://dx.doi.org/10.1038/msb.2010.59
http://dx.doi.org/10.1038/nrg3185
http://dx.doi.org/10.1371/journal.pgen.1005206
http://dx.doi.org/10.1371/journal.pgen.1005206
http://dx.doi.org/10.1016/j.cell.2014.02.033
http://dx.doi.org/10.1073/pnas.71.4.1342
http://dx.doi.org/10.1093/nar/22.7.1287
http://dx.doi.org/10.1093/nar/22.7.1287
http://dx.doi.org/10.1093/nar/22.23.4953
http://dx.doi.org/10.1016/S0022-2836(05)80024-5
http://dx.doi.org/10.1073/pnas.87.19.7668
http://dx.doi.org/10.1073/pnas.87.19.7668
http://dx.doi.org/10.1093/nar/22.15.3018
http://dx.doi.org/10.1038/msb.2013.32
http://dx.doi.org/10.1093/nar/gkt1139
http://dx.doi.org/10.1093/nar/gkt1139
http://dx.doi.org/10.1126/science.1241934
http://dx.doi.org/10.1126/science.1241934
http://dx.doi.org/10.1093/molbev/msu126
http://dx.doi.org/10.1093/molbev/msu126
http://dx.doi.org/10.1073/pnas.1301301110
http://dx.doi.org/10.1073/pnas.1301301110
http://dx.doi.org/10.1038/nmeth.2403
http://dx.doi.org/10.1016/j.gene.2006.01.033
http://dx.doi.org/10.1016/j.gene.2006.01.033
http://dx.doi.org/10.1128/JB.184.20.5733-5745.2002
http://dx.doi.org/10.1186/1752-0509-4-71
http://dx.doi.org/10.1186/1752-0509-4-71
http://dx.doi.org/10.1073/pnas.1002036107
http://dx.doi.org/10.1073/pnas.1002036107


rsob.royalsocietypublishing.org
Open

Biol.7:160239

11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

12
 A

pr
il 

20
21

 

28. Sakai H, Imamura C, Osada Y, Saito R, Washio T,
Tomita M. 2001 Correlation between Shine –
Dalgarno sequence conservation and codon usage
of bacterial genes. J. Mol. Evol. 52, 164 – 170.
(doi:10.1007/s002390010145)

29. Starmer J, Stomp A, Vouk M, Bitzer D. 2006
Predicting Shine – Dalgarno sequence locations
exposes genome annotation errors. PLoS
Comput. Biol. 2, 454 – 466. (doi:10.1371/journal.
pcbi.0020057)

30. Zheng X, Hu GQ, She ZS, Zhu H. 2011 Leaderless
genes in bacteria: clue to the evolution of
translation initiation mechanisms in prokaryotes.
BMC Genomics 12, 361. (doi:10.1186/1471-2164-
12-361)

31. Ingolia NT, Ghaemmaghami S, Newman JRS,
Weissman JS. 2009 Genome-wide analysis in vivo of
translation with nucleotide resolution using
ribosome profiling. Science 324, 218 – 223. (doi:10.
1126/science.1168978)

32. Li GW, Oh E, Weissman JS. 2012 The anti-Shine –
Dalgarno sequence drives translational pausing and
codon choice in bacteria. Nature 484, 538 – 541.
(doi:10.1038/nature10965)

33. Schrader JM et al. 2014 The coding and noncoding
architecture of the Caulobacter crescentus genome.
PLoS Genet. 10, e1004463. (doi:10.1371/journal.
pgen.1004463)

34. Li GW. 2015 How do bacteria tune translation
efficiency? Curr. Opin. Microbiol. 24, 66 – 71.
(doi:10.1016/j.mib.2015.01.001)

35. Lahens NF et al. 2014 IVT-seq reveals extreme bias
in RNA-sequencing. Genome Biol. 15, R86. (doi:10.
1186/gb-2014-15-6-r86)
36. Miettinen TP, Bjorklund M. 2014 Modified
ribosome profiling reveals high abundance
of ribosome protected mRNA fragments
derived from 30 untranslated regions. Nucleic
Acids Res. 43, 1019 – 1034. (doi:10.1093/nar/
gku1310)

37. Mohammad F, Woolstenhulme CJ, Green R, Buskirk
AR. 2016 Clarifying the translational pausing
landscape in bacteria by ribosome profiling.
Cell Rep. 14, 686 – 694. (doi:10.1016/j.celrep.2015.
12.073)

38. Steijger T et al. 2013 Assessment of transcript
reconstruction methods for RNA-seq. Nat. Methods
10, 1177 – 1184. (doi:10.1038/nmeth.2714)

39. Zupanic A, Meplan C, Grellscheid SN, Mathers JC,
Kirkwood TBL, Hesketh JE, Shanley DP.
2014 Detecting translational regulation by
change point analysis of ribosome profiling data
sets. RNA 20, 1507 – 1518. (doi:10.1261/rna.
045286.114)

40. Subramaniam AR, DeLoughery A, Bradshaw N, Chen
Y, O’Shea E, Losick R, Chai Y. 2013 A serine sensor
for multicellularity in a bacterium. eLife 2, 1 – 17.
(doi:10.7554/eLife.01501)

41. Gu W, Zhou T, Wilke CO. 2010 A universal trend of
reduced mRNA stability near the translation-
initiation site in prokaryotes and eukaryotes. PLoS
Comput. Biol. 6, e1000664. (doi:10.1371/journal.
pcbi.1000664)

42. Park C, Chen X, Yang JR, Zhang J. 2013 Differential
requirements for mRNA folding partially explain
why highly expressed proteins evolve slowly. Proc.
Natl Acad. Sci. USA 110, E678 – E686. (doi:10.1073/
pnas.1218066110)
43. Komarova AV, Tchufistova LS, Supina EV, Boni IV.
2002 Protein S1 counteracts the inhibitory effect of
the extended Shine – Dalgarno sequence on
translation. RNA 8, 1137 – 1147. (doi:10.1017/
S1355838202029990)

44. Vimberg V, Tats A, Remm M, Tenson T. 2007
Translation initiation region sequence preferences in
Escherichia coli. BMC Mol. Biol. 8, 100. (doi:10.1186/
1471-2199-8-100)

45. Ringquist S, Jones T, Snyder EE, Gibson T, Boni I,
Gold L. 1995 High-affinity RNA ligands to
Escherichia coli ribosomes and ribosomal protein S1:
comparison of natural and unnatural binding sites.
Biochemistry 34, 3640 – 3648. (doi:10.1021/
bi00011a019)

46. Mather WH, Hasty J, Tsimring LS, Williams RJ. 2013
Translational cross talk in gene networks. Biophys. J.
104, 2564 – 2572. (doi:10.1016/j.bpj.2013.04.049)

47. An W, Chin JW. 2009 Synthesis of orthogonal
transcription-translation networks. Proc. Natl Acad.
Sci. USA 106, 8477 – 8482. (doi:10.1073/pnas.
0900267106)

48. Orelle C, Carlson ED, Szal T, Tanja F, Jewett MC,
Mankin AS. 2015 Protein synthesis by ribosomes
with tethered subunits. Nature 524, 119 – 124.
(doi:10.1038/nature14862)

49. Gruber AR, Lorenz R, Bernhart SH, Neuböck R,
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