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The translation system (the ribosome and associated factors) is

the cell’s factory for protein synthesis. The extraordinary

catalytic capacity of the protein synthesis machinery has driven

extensive efforts to harness it for novel functions. For example,

pioneering efforts have demonstrated that it is possible to

genetically encode more than the 20 natural amino acids and

that this encoding can be a powerful tool to expand the

chemical diversity of proteins. Here, we discuss recent

advances in efforts to expand the chemistry of living systems,

highlighting improvements to the molecular machinery and

genomically recoded organisms, applications of cell-free

systems, and extensions of these efforts to include eukaryotic

systems. The transformative potential of repurposing the

translation apparatus has emerged as one of the defining

opportunities at the interface of chemical and synthetic biology.
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Background
Proteins represent a crucial class of biomolecules, univer-

sally employed by all living organisms to fulfill essential
www.sciencedirect.com 
structural, functional, and enzymatic roles necessary to

support life. In nature, these polymers are composed

generally of twenty natural amino acid (AA) building

blocks, which can be combined in a near-infinite number

of combinations to generate an impressive level of struc-

tural and functional diversity (Figure 1). However, many

interesting chemistries cannot be accessed using only

these natural building blocks; accordingly, for some time

there has been an interest in the incorporation of non-

standard amino acids (nsAAs) featuring novel functional

sidegroups to expand the repertoire of protein functions.

Broadly speaking, nsAAs can be divided into two classes.

Synthetic nsAAs are chemically synthesized, and can bear

little resemblance to their naturally occurring counter-

parts. Posttranslational modifications (PTMs) are modified

derivatives of canonical amino acids. In recent years, two

distinct approaches for the incorporation of nsAAs into

proteins have emerged (Figure 1(a)). One such approach

is global suppression. This method uses auxotrophic strains

that are incapable of synthesizing a particular AA. When

grown in the presence of a nsAA that bears close structural

resemblance to the ‘missing’ AA, the organism’s native

translational machinery incorporates the nsAA instead

[1,2]. An alternative approach uses orthogonal translation

systems (OTSs) to genetically encode an nsAA of interest

site-specifically by reassignment of codons, typically the

amber stop codon (TAG) in a strategy known as amber
suppression [3].

To date, >150 nsAAs have been incorporated by OTSs

into polypeptides [4] for a wide range of applications

including the introduction of bioorthogonal handles for

protein tagging [5,6], alteration of protein stability [7,8],

monitoring of protein localization, and genetic encoding

of PTMs [9�,10–12]. As a result of these impressive efforts

and the transformative potential to construct bio-based

products beyond natural limits, expanding the genetic

code has emerged as one of several major defining oppor-

tunities and points of synergy in chemical and synthetic

biology.

This review focuses on recent developments in repurpos-

ing the translation system for novel functions, with a focus

on codon reassignment. We first examine development of

the molecular machinery at the heart of genetic code

expansion. Next, we discuss nsAA incorporation in sev-

eral contexts, including whole-genome recoding, prokary-

otic and eukaryotic systems in vivo as well as in vitro. We
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Methods for genetic code expansion. (a) Two general paradigms exist for the genetic incorporation of nonstandard amino acids into proteins

contrasted with the natural process of encoding the canonical amino acids. The close analog methodology complements a natural amino acid

auxotrophy with a close nonstandard analog, enabling global protein labeling by native translational machinery. The orthogonal translation

methodology introduces orthogonal translational machinery engineered to charge an orthogonal tRNA with a nonstandard amino acid, enabling

site-specific targeted genetic incorporation. Certain nsAAs may require additional mutations in the elongation factor or the ribosome. (b) For

targeted genetic incorporation, amber suppression is the most widely used technique. Competition with release factors limits efficiency, and

methods are discussed to overcome this. (c) Quadruplet suppression can be performed with appreciable efficiency with the use of an engineered

orthogonal 16S ribosomal subunit [27��]. (d) Sense codons can be reassigned by using an orthogonal 23S ribosomal subunit, engineered to

accept a synthetic set of tRNAs [60].
end with a discussion of current challenges in the field

and provide commentary on future opportunities.

Genetic code expansion using OTSs
Amber suppression seeks to ‘hijack’ the amber transla-

tional stop codon (TAG), recoding it into a sense codon

corresponding to a nsAA of interest. Generally, this is

accomplished using a suppressor tRNA that has been

mutated to decode the amber codon and an aminoacyl-
tRNA synthetase (aaRS) that has been mutated to accept

the nsAA of interest and covalently load it onto the

suppressor tRNA. These components are typically

sourced from distant archeal species to ensure orthogo-

nality to host translation machinery, undergoing directed

evolution to improve their compatibility with a new nsAA

and enable its site-specific incorporation into proteins.
Current Opinion in Chemical Biology 2015, 28:83–90 
Directed evolution is the most widely used approach for

the generation of novel OTS components [13–15]

(Figure 2). These efforts start with the selection of a

scaffold aaRS/tRNA pair. To date, several aaRS/tRNA

pairs have been used in the creation of new OTSs. The

Methanocaldococcus jannaschii TyrRS/tRNATyr pair is ar-

guably the most common pair used, but is generally

limited to aromatic amino acids and is not orthogonal

in eukaryotes [4,15,16�]. The PylRS/tRNAPyl pair from

Methanosarcina species (M. mazei, M. barkeri) has shown

compatibility with eukaryotic systems [16�,17], and is an

especially attractive starting point for evolution as the

native PylRS natively demonstrates polysubstrate speci-

ficity [18] and tRNAPyl natively decodes the amber codon

[19]. Other starting components have included the

o-phosphoserine (Sep)RS from Methanococcus maripaludis
www.sciencedirect.com
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Figure 2
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General methodology for engineering orthogonal translation systems for

novel nsAAs. (a) Scaffold orthogonal aaRS/tRNA pairs are selected from

distant organisms. Residues in the amino acid binding pocket of the aaRS

are randomized. (b) A negative selection is performed to exclude aaRS

variants capable of charging natural amino acids. In the absence of the

nsAA, clones are selected by the inability to suppress a toxic gene. (c) A

positive selection is performed to retrieve aaRS variants capable of

charging the nsAA, selecting for the ability to suppress a selectable marker

gene, such as an antibiotic resistance marker. (d) The selected orthogonal

translation system consists of the orthogonal aaRS, tRNA, and nsAA.

www.sciencedirect.com 
[9�] and the TrpRS/tRNATrp pair from Saccharomyces
cerevisiae [20]. The TyrRS/tRNATyr and LeuRS/tRNALeu

pairs from Escherichia coli have also been used in OTS

development for use in higher organisms [21,22]. After

selecting a scaffold pair, crystal structural data is com-

monly used to identify specific residues in the aaRS

that interact with the amino acid and the tRNA

[13,23]. These residues are randomized to create a library

of mutant aaRS variants in vitro and subsequently trans-

formed in vivo. Finally, alternating rounds of selection

identify mutant variants that are both functional and

orthogonal to native machinery [13,15]. Negative selec-

tions eliminate variants that can charge the o-tRNA with

native amino acids based on the synthesis of a toxic gene

(e.g., barnase) in the absence of the cognate nsAA. Positive

selections in the presence of the nsAA isolate variants that

can charge the nsAA of interest onto the o-tRNA based on

the suppression-dependent synthesis of a selectable mark-

er (e.g., antibiotic resistance gene) or reporter (e.g., GFP).

By subjecting ‘winners’ to alternating rounds of these

screens, a nsAA-specific aaRS/tRNA pair can be identified.

While most new OTSs have focused on the generation of

new nsAA–aaRS–tRNA pairs, some efforts have expand-

ed OTSs to include additional components. In an exem-

plary study, incorporation of Sep was only possible after the

development of a Sep-specific elongation factor [9�].
More recently, researchers were able to increase incorpo-

ration efficiency of selenocysteine (Sec) to >90% by

engineering an elongation factor optimized for Sec

[24]. nsAA incompatibility with the ribosome may also

be an impediment to incorporation [25]. Platforms for

ribosomal engineering and evolution will be integral to

the elucidation and optimization of ribosome/nsAA inter-

actions. Two recent approaches permit construction of

modified ribosomes by decoupling organism fitness from

ribosome function. In the first, researchers engineered a

30S subunit that is made orthogonal to natural compo-

nents by a mutant 16S rRNA; this orthogonal subunit can

be mutated to evolve novel function without impairing

host viability [26,27��]. In a parallel approach, a system for

the in vitro assembly of functional modified ribosomes has

been developed [28–30]. We still await the development

of a fully orthogonal ribosome in vivo.

Prokaryotic strain engineering tailored for
genetic code expansion
Historically, nsAA incorporation via natural codon sup-

pression has been limited by native translational compo-

nents that have evolved essential function to faithfully

decode all codons within an open reading frame. In the

case of amber suppression, release factors are a class of

proteins responsible for facilitating the termination of

translation in response to ribosomal stalling at a stop

codon. Competition between loaded suppressor tRNAs

and release factor proteins at amber codons meant to

encode nsAAs severely hinders successful suppression,
Current Opinion in Chemical Biology 2015, 28:83–90
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with release factor activity resulting in the premature

truncation of most of the protein product [31]. Resultant

yields of the target nsAA-containing protein under these

conditions are very low, especially for proteins containing

multiple instances of the same nsAA [32�]. Conversely,

the presence of OTSs on high copy plasmids in the

presence of high concentrations of nsAA in vivo can also

drive the incorporation of nsAAs at >300 amber codons that

terminate native genes, resulting in cellular toxicity [33��].

Consequently, much effort has gone into the elimination

of release factor activity to improve nsAA incorporation.

Initial attempts to outright delete the essential gene prfA
that encodes release factor 1 (RF1) were stymied by cell

inviability. Several early approaches, including release

factor engineering [34] and supplementation in trans with

partially recoded versions of the amber-dependent essen-

tial genes [35] permitted subsequent removal of prfA
from the organism. More recent efforts have recoded

the genome of E. coli. In such efforts, researchers edited

the amber-dependent essential genes to terminate in-

stead with the synonymous ochre codon (TAA) and

deleted prfA from the organism. Incorporation of Sep

was greatly enhanced in one such RF1-deficient recoded

strain [36]. More recently, a recoded RF1-deficient strain

was used in the preparation of cell lysates to improve the
Figure 3
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incorporation of the nsAA p-propargyloxy-L-phenylala-

nine (pPaF) in vitro [32�,37].

These strain engineering efforts culminated with the

recently reported completion of the first completely gen-

omically recoded organism (GRO), an E. coli-derived

strain that lacks all amber codons and RF1 [33��,38]. In

this study, the authors systematically reassigned all 321
native instances of the amber (TAG) codon to the ochre

(TAA) codon and deleted the prfA gene (Figure 3). In the

resulting strain (C321DA) the amber codon is orthogonal

and unrecognized by the remaining translational machin-

ery, freeing it for use as a dedicated codon for nsAA

incorporation. This strain has demonstrated improved

properties for incorporation of nsAAs [33��] and has more

recently been engineered to depend on nsAAs as a 21st

synthetic biochemical building block [39�,40�].

Beyond amber suppression, some effort has been made to

access additional codons for nsAA assignment, such as the

‘ochre’ (TAA) [41] and ‘opal’ (TGA) stop codons [42]. In a

parallel approach, researchers instead sought to access

non-natural quadruplet codons to encode nsAAs [43,44].

Combined with amber suppression, quadruplet suppres-

sion has enabled the incorporation of multiple distinct

nsAAs into a single polypeptide [45��,46,47].
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te, to develop in vitro translation systems with open coding channels
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Cell-free systems for genetic code expansion
Cell-free protein synthesis (CFPS) systems offer another

approach for the incorporation of nsAAs (Figure 3). CFPS is

the in vitro synthesis of proteins without using intact cells

[48–50]. A lack of physical boundaries permits precise ma-

nipulation of reaction contents, simplifies product purifica-

tion, and enables efficient incorporation of bulky/charged

nsAAs that typically exhibit poor membrane permeability in
vivo (e.g., pPaF) [51�]. Additionally, cell viability is no longer

a constraint — reactions may be supplemented directly

with purified OTS components, which have known toxicity

effects in vivo [52]. These advantages, when combined with

recent improvements to chassis strains and energy regener-

ation systems that have enabled high-yielding (>1 g/L) [49]

and long-lasting (>10 h batch mode) [37] synthesis, have led

to increased interest in the use of CFPS for nsAA incorpo-

ration into proteins [32�,37,51�,53–55].

One particularly exciting area for CFPS is in genetic code

reassignment. For instance, translation systems reconsti-

tuted from purified components [56] or crude cell extracts

depleted of native tRNAs [57] can be selectively supplied

with purified tRNAs to essentially create a custom genet-

ic code with select sense codons left ‘blank’ for nsAA

reassignment [58,59]. Alternatively, in a recent effort a

50S ribosomal subunit was developed with mutations at

the peptidyl transferase center that abolish its ability to

use several native tRNAs for translation [60]. The use of

this ribosome together with tRNAs containing compen-

satory point mutations enabled reprogramming of the

genetic code, providing proof of concept for a potential

new strategy for genetic code rewriting and expansion in
vitro. Finally, in vitro nsAA-incorporation efforts uniquely

benefit from the use of self-aminoacylating tRNAs fea-

turing flexizyme ribozymes to extend the genetic code

without the need for laborious nsAA–aaRS–tRNA cog-

nate pair development [61].

Genetic code expansion in eukaryotic
systems
Amber suppression has been adapted to eukaryotic sys-

tems as a tool for the interrogation of cellular biology.

Engineered orthogonal aaRS/tRNA pairs have been used

to genetically encode nsAAs that modulate PTMs by

photocaging lysine [62] and serine [63] residues, promote

chromatin condensation with crosslinking residues [64],

introduce chemical handles for fluorescent protein label-

ing and live cell imaging [65], among many other applica-

tions. Most often, OTS components are scaffolded on

M. mazei PylRS/tRNAPyl, E. coli TyrRS/tRNATyr or E. coli
LeuRS/tRNALeu pairs, engineered in E. coli or S. cerevisiae
[21], and then ported to mammalian vectors.

In addition to unicellular organisms and tissue culture,

amber suppression with engineered PylRS/tRNAPyl deri-

vatives has been demonstrated in the nematode Caenor-
habditis elegans [66��]. Similar work has been successful in
www.sciencedirect.com 
the fly Drosophila melanogaster, where nsAAs could be

incorporated both site-specifically and tissue-specifically

into proteins [67].

As with prokaryotic systems, competition with release

factors remains a major barrier for efficient amber sup-

pression in eukaryotes. Though orthogonal ribosomes or

genome-wide codon reassignment have not yet been

demonstrated in these systems, efforts are being made

in this direction. Recently, a de novo synthesis of

S. cerevisiae chromosome III included TAG ! TAA stop

codon reassignments [68��]. As this effort is extended to

the remaining chromosomes, the resulting synthetic

strain will lack native TAG codons, motivating the need

to engineer the specificity of the single eukaryotic release

factor to exclude amber recognition.

An additional challenge is native quality control machin-

ery. Nonsense mediated decay (NMD) surveys tran-

scripts for nonsense codons excessively distal from the

30 end, triggering degradation in response to their pres-

ence [69]. Addressing this limitation, the pathway has

been knocked out in C. elegans to boost amber suppression

efficiency [66��].

A final consideration in these systems is the expression of

the orthogonal tRNA, as eukaryotic RNA polymerase III

is typically recruited to intragenic A and B-box promoter

sequences. One solution has been to identify orthogonal

aaRS/tRNA pairs containing A and B-like elements.

For instance, E. coli’s TyrRS/tRNATyr is orthogonal in

S. cerevisiae and contains its consensus A and B-box [21].

However, OTSs scaffolded on PylRS/tRNAPyl, lack such

intragenic sequences. Instead these tRNAs have been

successfully expressed by co-opting dicistronic tRNA

scaffolds such as tRNAArg
UCU [70], or by using the

extragenic U6 RNA polymerase III promoter [71].

Current challenges and future outlook
Looking forward, three major challenges define the tra-

jectory of this field: the development of more efficient

OTSs, accession of more open coding channels to enable

multi-site incorporation of multiple nsAAs, and the gen-

eration of OTSs engineered for more exotic nsAAs.

Engineered OTSs suffer poor enzymatic efficiencies rel-

ative to native translational machinery [25]. Overall, this

represents a problem of insufficient aaRS evolution, as

typically only 6–8 residues proximal to the amino acid

binding pocket are mutagenized. Further diversification

is limited by library size constraints — the randomization

of six residues results in a library of nearly 108 members,

quickly saturating standard screening techniques. The

use of computational protein modeling may enable more

rational engineering, guided by in silico binding predic-

tions [72]. Further, during evolution OTSs are screened

for the ability to suppress just a few codons in selectable
Current Opinion in Chemical Biology 2015, 28:83–90
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markers, whereas native translational machinery faces a

load of thousands of codons. Increasing the load on OTSs

may promote the selection of more catalytically active

enzymes. Amber suppression of native essential genes has

proven to be an effective strategy to tie strain viability to

nsAA incorporation [39�,40�], offering a potential route to

drive protein evolution under more stringent selective

conditions.

Multi-site incorporation of a single nsAA at high levels

(>10) has remained elusive due to the use of codons that

have their cognate translation components (e.g., RF1)

out-competing the incorporation of the nsAA, as well as

the impaired activity of OTSs. These limitations are

compounded in efforts to achieve multi-site incorporation

of multiple distinct nsAAs. This pursuit will require advances

in our ability to suppress multiple codons simultaneously,

and in the development of mutually orthogonal OTSs. In
vivo, the field is currently limited to suppressing two

distinct codons simultaneously. The use of nonstandard

nucleotide bases [73] may enable crossing this barrier in the

near future. Alternatively, radical recoding strategies that

extend off the RF1-deficient GRO may provide a route to

more codons. Even with more codons, new advances in

orthogonal OTSs are needed. OTSs have been selected

against interactions with native translational machinery, but

not necessarily against other OTSs. This raises the poten-

tial for OTS cross-reactions when expressed simultaneous-

ly. Work is being done to develop orthogonal tRNA

acceptor stems [74] and additional aaRS/tRNA scaffolds

to mitigate this cross-orthogonality.

Finally, certain biological constraints limit the scope of

nsAA diversity. These include limitations on cell mem-

brane permeability and steric incompatibility with the

ribosome and other translational components such as elon-

gation factors. Further engineering these components with

cell-free systems or synthetic ribosomes is necessary for

increasing the available nsAA chemical space.

Overcoming some of these technological barriers will

better enable the creative potential of nonstandard pro-

tein development in producing the next wave of highly

functionalized biomaterials and protein therapeutics [75]

with broad applications in medicine, materials science

and biotechnology.
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