Effect of Complementary Nucleobase Interactions on the Copolymer Composition of RAFT Copolymerizations

Yan Kang,† Annhelen Lu,‡ Andrew Ellington,‡ Michael C. Jewett,§ and Rachel K. O’Reilly*†

†Department of Chemistry, University of Warwick, Library Road, Coventry, CV4 7AL, United Kingdom
‡Chemistry and Biochemistry Department, The University of Texas at Austin, Austin, Texas 78712-0165, United States
§Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States

Supporting Information

ABSTRACT: Methacryloyl-type monomers containing adenine and thymine have been successfully synthesized with good yields. The homopolymerization and copolymerization of these two new functional monomers were carried out using RAFT polymerization. The reactivity ratios of monomer pairs were measured and calculated using a nonlinear least-squares (NLLS) method, and the results confirmed that the monomer reactivities were dependent on the solvent used for polymerization. The presence and absence of hydrogen bonding affected the resultant copolymer composition where moderate alternating copolymers had a tendency to be formed in CHCl₃, while in DMF, statistical copolymers were formed. Furthermore, the glass transition temperatures of the copolymers were investigated, and the self-assembly of block copolymers made in solvents with different polarity were studied.

Sequence-controlled polymerization is one of the fundamental processes in nature and allows access to biopolymers with enhanced function as a result of specific folding and structure. The defined sequence contained in biopolymers such as DNA, RNA strands, and proteins are responsible for the diversity, complexity, and adaptability of living organisms. By analogy, it is proposed that synthetic polymers with designed and controlled sequence will play an important role in materials science. Some promising approaches to control the sequence of synthetic polymers have emerged in recent years. To date, solid phase synthesis, a method relying on step-by-step attachment of monomers, remains the most reliable approach to synthesize sequence-controlled polymers. Alternatively, other facile and elegant methods have also been developed, such as tandem catalysis, designed templates, and chain copolymerization. These have been applied to achieve precise polymerization with expected and specific sequences.

It is known that chain copolymerizations (e.g., ionic or radical polymerization) are generally statistical processes leading to statistical polymer structures. However, in some particular cases, sequence can be controlled through manipulation of the reactivity of active chain ends. One way to achieve this manipulation is to shorten the distance between a chain end and a monomer or between monomers by specific covalent or noncovalent interactions, such as host–guest interactions, donor–acceptor interactions, coordination bonding, and hydrogen bonding of nucleobases. Among these interactions, hydrogen bonding recognition interactions, as a fundamental property of nucleic acids, are of great interest.

Hydrogen bonding interactions of corresponding nucleobases play a key role in nature for synthesizing biopolymers with an exact complementary sequence and the same length as the original template and for mediating self-assembly of biomacromolecules to fold into one or more specific spatial conformations. Inspired by nature, synthetic nucleobase chemistry have been developed to control the polymers’ tacticity, to template a polymerization, to achieve a biomimetic segregation/templating approach, to drive the self-assembly, and to manipulate the sequences. This pioneering work has provided preliminary scope for further investigation into nucleobase materials. However, to our knowledge, there has been little research into sequence-controlled polymerization driven by complementary nucleobases. Previous reports from the 1970s have indicated that methacryloyl-type monomers containing nucleobases (in this work, uracil/thymine and adenine) can be polymerized using free radical polymerization to access alternating polymers. Since these reports, no further work has explored this observation. Given the recent advances in characterization, polymerization, and monomer reactivity ratios, we have thus revisited this system.

Among the living radical techniques, reversible addition–fragmentation chain transfer polymerization (RAFT) appears to be the most versatile process in terms of the mild reaction conditions, the variety of monomers that can be polymerized and the feasibility for the incorporation of various function-
However, there have been few reports where RAFT has been used to make polymers containing nucleobases directly. Hence, a goal is to study the synthesis of polymers containing nucleobase functionalities via RAFT. In addition, copolymerization behavior of the nucleobase monomers were studied in solvents with different capability of hydrogen-bonding tolerance (CHCl₃ and DMF). The reactivity ratios of the two monomers in both CHCl₃ and DMF were estimated. Moreover, the physical properties and the self-assembly behavior of the copolymers synthesized in different solvents were also investigated.

Both monomers were synthesized according to a modified literature procedure (Supporting Information, Scheme S1) and high yields were obtained. One of the most important features of nucleobases is their ability to hydrogen bond to each other forming a base-base interaction pair. For adenine and thymine, this is the result of hydrogen bonding interactions between the purine and pyrimidine functionalities (Figure 1).

To investigate the hydrogen bonding interactions between the synthesized nucleobase monomers, AMA and TMA, mixtures at varying ratios of the two were studied by ¹H NMR spectroscopy at different temperatures. CDCl₃ and DMF were selected as target solvents due to their different polarities and the established differences in ability to suppress or promote hydrogen bonding interactions. The ¹H NMR investigations were carried out at room temperature (25 °C) and at higher temperature (60 °C) to explore the strength of these interactions at the temperatures used for polymerization (Figure 1, Supporting Information, Figure S4). In CDCl₃, it was observed that increasing the concentration of AMA resulted in a downfield shift of the imine proton of TMA (labeled * in Figure 1, from 8.28 to 11.27 ppm at 25 °C, from 8.02 to 9.80 ppm at 60 °C). The downfield shift at 25 °C was more prominent than at 60 °C, indicating that the hydrogen bonding interactions are weaker at elevated temperatures. Nevertheless, hydrogen bonding interactions still occur at elevated temperatures. In contrast, in DMF little or no shift of the imide proton of TMA was observed at 25 or 60 °C. This is indicative of the lack of nucleobase interactions which is independent of temperature. The weaker hydrogen bonding interactions is a result of the more polar nature of DMF. The stoichiometry of the hydrogen-bonding complex was evaluated by Job’s method under conditions similar to those for further copolymerizations (Supporting Information, Figure S5). The results show the formation of a 1:1 complex between AMA and TMA. Moreover, the association constant between the two monomers was calculated using Hildebrand–Benesi model (Supporting Information, Figure S6). The calculated association constants were 20 M⁻¹ in CDCl₃ at 60 °C and 1 M⁻¹ in DMF-d₇ at 60 °C. These studies further reveal that the hydrogen-bonding interactions between the two monomers are indeed solvent dependent.

The homopolymerizations of the two synthesized monomers AMA and TMA were explored using established RAFT methods. RAFT polymerization was carried out using CTA 2 as the chain transfer agent (CTA), DMF or CHCl₃ as the solvent, and AIBN as the initiator (Scheme 1). The polymerization in DMF was found to be homogeneous, suggesting a strong interaction between the nucleobase functionalities and the solvent exists. However, when CHCl₃ was used as the solvent, the polymerization was found to be

**Figure 1.** Expected hydrogen bonding interactions of the adenine–thymine pair is shown where the key imine signal used in the ¹H NMR spectroscopy study is indicated with a *; ¹H NMR spectra of the AMA and TMA mixtures with varying concentrations of AMA; [TMA] = 10 mM, [AMA] = 0, 2.5, 5, 10, 15, 20 mM. (a) CDCl₃ at 60 °C; (b) DMF-d₇ at 60 °C.

**Scheme 1.** Synthesis of (a) Copolymers (PAMA-co-PTMA) Using CTA 1; (b) Copolymers (PAMA-co-PTMA) Using CTA 2; (c) Block Copolymers PMMA₁₂₀-b-(PAMAₓ-co-PTMA₉ₓ) in CHCl₃ or DMF.
somewhat heterogeneous due to the insolubility of the polymer. The molecular weight of the resultant polymers were determined by \( ^1 \text{H} \) NMR spectroscopy by comparing the integration of the backbone signals with those of the end group from the CTA. Furthermore, SEC (in DMF, with PMMA standards) was used to determine the molecular weight and molecular weight distribution.

Both homopolymers carried out in DMF were polymerized with good control over molecular weights and high conversion were obtained after 24 h (Supporting Information, Table S1). The SEC traces for both homopolymers (PAMA and PTMA) were found to be narrow, indicating a narrow molecular weight distribution. Additionally, RAFT chain end functionalities were analyzed by \( ^1 \text{H} \) NMR spectroscopy (Table 1, Supporting Information, Figures S7–10), confirming good RAFT group chain end fidelity. Polymers carried out in CHCl\(_3\) on the other hand, were found to be less controlled due to polymer precipitation during the polymerization process (Supporting Information, Table S1). Nevertheless, the polymers were found to be more controlled than those synthesized via traditional free radical polymerization methods.

It should be noted that the solubility of the resultant homopolymers is somewhat limited but they were found to be soluble in DMF, DMSO, DMAc, and N-methyl-2-pyrrolidone. An adenine containing methacrylate polymer which was prepared by free radical polymerization has previously been reported to be insoluble in DMF and pyridine,\(^b\) but this study has shown that PAMA is fully soluble in DMF at relatively low molecular weights (i.e., <15 kDa). To explore the effect of solvent on the composition of the resulting copolymers, further studies were carried out in both CHCl\(_3\) and DMF.

Two different CTAs were used for the copolymerizations of AMA/TMA (Scheme 1a,b) to confirm the observed results were in fact related to the different solvents (DMF and CHCl\(_3\)) used in the polymerization and not an effect of the CTA. Following polymerization, the final copolymers were dissolved in DMSO-\(d_6\) or DMF-\(d_6\) and the ratio of the two monomers in the copolymer was calculated using \( ^1 \text{H} \) NMR spectroscopy (Table 1, polymers 1–8). In the polymerizations where the initial feed mol fraction of the two monomers was 1:1, the resulting mol fraction in the copolymers (1 and 3) was very close to 1:1, regardless of the solvent used. However, when the mol fraction of the two monomers in the initial feed was changed to 2:1 (AMA/TMA, polymerizations 2 and 4), a difference in the mol fraction in the resulting copolymers was observed. The final copolymer composition was found to be dependent on the solvent used in the polymerization. When the polymerization was carried out in DMF the final copolymer composition for 4 was found to be very close to 2:1. However, in CHCl\(_3\) the ratio of the two monomers in the final copolymer 2 was found to be 1.25:1. These results indicate copolymers with different microstructures were synthesized in the two different solvents. Similar results were observed for the two different CTAs, indicating the final polymer composition is independent of the type of CTA used. Hence, in CHCl\(_3\), regardless of the initial monomer ratios, the final polymers synthesized (5 and 6) tend to have a 1:1 composition of the two monomers. In contrast, in DMF the final polymer composition is the same as the initial monomer feed (for CTA 2, polymers 7 and 8). As previously discussed, hydrogen bonding interactions were observed between AMA and TMA in CHCl\(_3\) at 60 °C, while little or no interactions were observed in DMF at the same temperature. We propose that the presence or absence of such interactions between monomers during polymerization has an effect on the resulting copolymer composition.

It should be noted that CTA 1 was not stable in DMF, evidenced from examination of CTA 1 dissolved in DMF over time at room temperature. The color of the CTA/DMF solution changed from pink to orange after 1 day while the solution color stayed pink in CHCl\(_3\). We hypothesize that this may be related to impurities in DMF such as amines or imines reacting with the CTA. Previous studies have reported that aminolysis of the thiocarbonylthio group commonly occurs in the presence of free primary and secondary amines.\(^{39,40}\) Thus, although some insightful results have been obtained using CTA 1 in DMF, further studies have been carried out utilizing CTA 2 for polymerizations performed in DMF.

To further explore the behavior of AMA and TMA copolymerizations, the monomer reactivity ratios were investigated (Supporting Information, Tables S2–S4). Mol fractions of the two monomers in the initial feed and in the final copolymers were obtained by \( ^1 \text{H} \) NMR spectroscopy. Plots of

### Table 1. Polymerization Data for Polymers

<table>
<thead>
<tr>
<th>Polymer</th>
<th>CTA solvent</th>
<th>AMA/TMA (before)</th>
<th>AMA/TMA (after)</th>
<th>conv.</th>
<th>( M_n ), (kDa)</th>
<th>( M_{NMR} ), (kDa)</th>
<th>( M_{GPC} ), (kDa)</th>
<th>( D_n ), copolymer composition (PAMA/PTMA)</th>
<th>T(_f) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHCl(_3)</td>
<td>1:1</td>
<td>1:1</td>
<td>48,50</td>
<td>5.7</td>
<td>7.9</td>
<td>10.8</td>
<td>1.23</td>
<td>~1:1</td>
</tr>
<tr>
<td>2</td>
<td>CHCl(_3)</td>
<td>2:1</td>
<td>2:1</td>
<td>39,58</td>
<td>6.3</td>
<td>9.6</td>
<td>11.4</td>
<td>1.26</td>
<td>1.25:1</td>
</tr>
<tr>
<td>3</td>
<td>DMF</td>
<td>1:1</td>
<td>1:1</td>
<td>43,43</td>
<td>5.7</td>
<td>6.0</td>
<td>11.0</td>
<td>1.11</td>
<td>1:1</td>
</tr>
<tr>
<td>4</td>
<td>DMF</td>
<td>2:1</td>
<td>2:1</td>
<td>27,27</td>
<td>3.7</td>
<td>5.4</td>
<td>10.7</td>
<td>1.12</td>
<td>2:1</td>
</tr>
<tr>
<td>5</td>
<td>CHCl(_3)</td>
<td>1:1</td>
<td>1:1</td>
<td>70,75</td>
<td>10.0</td>
<td>13.2</td>
<td>16.1</td>
<td>1.37</td>
<td>~1:1</td>
</tr>
<tr>
<td>6</td>
<td>CHCl(_3)</td>
<td>1:1</td>
<td>1:1</td>
<td>51,68</td>
<td>7.6</td>
<td>18.0</td>
<td>21.3</td>
<td>1.38</td>
<td>1:1</td>
</tr>
<tr>
<td>7</td>
<td>DMF</td>
<td>1:1</td>
<td>1:1</td>
<td>92,92</td>
<td>12.7</td>
<td>14.1</td>
<td>17.0</td>
<td>1.22</td>
<td>1:1</td>
</tr>
<tr>
<td>8</td>
<td>DMF</td>
<td>2:1</td>
<td>2:1</td>
<td>60,60</td>
<td>9.0</td>
<td>14.7</td>
<td>14.7</td>
<td>2:1</td>
<td>2:1</td>
</tr>
<tr>
<td>9</td>
<td>CHCl(_3)</td>
<td>1:1</td>
<td>1:1</td>
<td>90,90</td>
<td>35.5</td>
<td>35.8</td>
<td>34.9</td>
<td>1.33</td>
<td>1:1</td>
</tr>
<tr>
<td>10</td>
<td>DMF</td>
<td>1:1</td>
<td>1:1</td>
<td>99,99</td>
<td>38.9</td>
<td>37.0</td>
<td>34.5</td>
<td>1.20</td>
<td>1:1</td>
</tr>
<tr>
<td>11</td>
<td>DMF</td>
<td>2:1</td>
<td>2:1</td>
<td>72</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>CHCl(_3)</td>
<td>1:1</td>
<td>1:1</td>
<td>95,95</td>
<td>21.3</td>
<td>26.8</td>
<td>26.1</td>
<td>1.32</td>
<td>1:1</td>
</tr>
<tr>
<td>13</td>
<td>CHCl(_3)</td>
<td>1:1</td>
<td>1:1</td>
<td>95,95</td>
<td>21.3</td>
<td>22.0</td>
<td>21.5</td>
<td>1.14</td>
<td>1:1</td>
</tr>
<tr>
<td>14</td>
<td>DMF</td>
<td>1:1</td>
<td>1:1</td>
<td>95,95</td>
<td>21.3</td>
<td>22.0</td>
<td>21.5</td>
<td>1.14</td>
<td>1:1</td>
</tr>
</tbody>
</table>

\(^{a}\)The ratio of monomers in initial feed. \(^{b}\)The ratio of residual monomers after polymerization. \(^{c}\)The final conversion of AMA (first number) and the final conversion of TMA (second number).
The copolymers exhibit strong hydrogen bonding interactions and therefore higher behavior of the copolymerization in CHCl$_3$ is not an extreme being close to zero. It should be noted that the alternating precursor polymers and can be predicted by Fox rule. The results suggest that the copolymerizations carried out in CHCl$_3$ tend to form alternating polymers, shown close to zero. The characterization data for the final block copolymers are shown in Table 1, polymers 9–14. It is evident that well-defined block copolymers with comparable molecular weight were obtained for both polymerizations, in CHCl$_3$ and DMF.

Copolymers were self-assembled in CHCl$_3$ and the morphologies were characterized by TEM and DLS. Close to spherical structures of around 40 nm were observed for polymer 10 assembled in CHCl$_3$ by unstained TEM on graphene oxide grids (Figure 3a). By comparison, a mixture of spherical micelles and elongated worm-like structures was observed by TEM (Figure 3b) under the same conditions when polymer 11 was assembled in CHCl$_3$. The sizes observed by DLS ($84$ and $69$ nm, for 10 and 11 respectively, see Figure S20) correlated well with the approximate sizes determined by TEM analysis.

Compared to polymers 10 and 11, polymers 13 and 14 have a shorter PMMA block that leads to the formation of larger spherical micelles (which perhaps have internal structure) for polymer 13 assembled in CHCl$_3$ (Figure 3c), while more obvious worm-like micelles were observed from the self-assembly of polymer 14 (Figure 3d). We hypothesize that the different monomer sequence in the functional block and the CTA used the reactivity ratios are comparable and also close to zero. The results suggest that the copolymerizations carried out in CHCl$_3$ tend to form alternating polymers, shown close to zero. The characterization data for the final block copolymers are shown in Table 1, polymers 9–14. It is evident that well-defined block copolymers with comparable molecular weight were obtained for both polymerizations, in CHCl$_3$ and DMF.

The $T_g$ of both homopolymers and copolymers were measured by DSC (Supporting Information, Figure S17). In general, the $T_g$ of a copolymer is between the $T_g$ of the two precursor polymers and can be predicted by Fox rule. However, in terms of specific interactions within a copolymer, such as hydrogen-bonding interactions, higher $T_g$s would be predicted. In this study, compared to the homopolymers prepared (for CTA 2, PAMA $T_g = 105$ °C, PTMA $T_g = 87$ °C), the copolymers exhibit strong hydrogen bonding interactions and therefore higher $T_g$s were observed as expected. However, due to the different molecular weights among the copolymers, the $T_g$s are not directly comparable although the nature of the CTA end group may have an effect on the polymers’ $T_g$.47

Polymers with different sequences usually allow access to different polymeric microstructures. To further study the properties of the functional copolymers prepared in this study, block copolymers were synthesized and self-assembled in CHCl$_3$. However, due to the heterogeneous character of the polymerization involving the two functional monomers in CHCl$_3$, resulting in unreliable RAFT end group fidelity, chain extension starting from the functional copolymers was not ideal. Thus, the block copolymers were prepared by first synthesizing the nonfunctional block, in this case, PMMA followed by chain extension with the functional block, AMA and TMA. The characterization data for the final block copolymers are shown in Table 1, polymers 9–14. It is evident that well-defined block copolymers with comparable molecular weight were obtained for both polymerizations, in CHCl$_3$ and DMF.

Figure 2. Plot of $f_1$ vs $F_1$ for the copolymerization of TMA and AMA using (1) CTA 2, in DMF; (2) CTA 2, in CHCl$_3$; (3) CTA 1, in CHCl$_3$ (the red line is the plot of $f_1$ vs $F_1$ for an ideal polymerization, where $r_1 = r_2 = 1$).

Figure 3. TEM images of self-assembled polymers on graphene oxide: (a) 10; (b) 11; (c) 13; and (d) 14; scale bar = 100 nm.

<table>
<thead>
<tr>
<th>CTA solvent</th>
<th>$M_1$</th>
<th>$M_2$</th>
<th>$r_1$</th>
<th>$r_2$</th>
<th>$r_1$,$r_2$</th>
<th>total error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 DMF</td>
<td>TMA</td>
<td>AMA</td>
<td>0.89</td>
<td>0.88</td>
<td>0.78</td>
<td>5</td>
</tr>
<tr>
<td>2 CHCl$_3$</td>
<td>TMA</td>
<td>AMA</td>
<td>0.23</td>
<td>0.17</td>
<td>0.039</td>
<td>6</td>
</tr>
<tr>
<td>1 CHCl$_3$</td>
<td>TMA</td>
<td>AMA</td>
<td>0.21</td>
<td>0.17</td>
<td>0.036</td>
<td>6</td>
</tr>
</tbody>
</table>

$M_1$ is monomer 1. $M_2$ is monomer 2. Total error given by the Contour program.
resulting block copolymer solubilities are responsible for the different morphologies observed. The strength of the hydrogen bonding interactions within the copolymers is different and thus drives the copolymers into different morphologies. However, the exact cause for this behavior is unclear and further investigations are ongoing.

In conclusion, methacryloyl-type monomers containing adenine and thymine functionalities have been successfully synthesized. RAFT polymerization using these monomers were carried out with good control over molecular weight and end group fidelity. The difference in reactivity of the two monomers in DMF and CHCl₃ were investigated. The results indicate polymerizations carried out in CHCl₃, a solvent that promotes hydrogen bonding interactions between the nucleobase-based monomers, tend to give moderate alternating copolymers. However, polymerizations in DMF, a solvent that suppresses the interactions, tend to give statistical copolymers. These hydrogen bonding interactions between two monomers may be used to access copolymers with specific monomer sequences. Moreover, properties of the copolymers such as self-assembly behavior were investigated and found to be greatly influenced by the presence or absence of hydrogen bonding between the two nucleobases.

ASSOCIATED CONTENT

Supporting Information
Experimental section, characterization data (NMR, SEC, DLS, TEM), association constant data, DSC, and reactivity ratio data and calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
E-mail: rachel.oreilly@warwick.ac.uk.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the University of Warwick, NSF and EPSRC for research funding. The SECs used in this research were obtained through Birmingham Science City: Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM), and partly funded by the European Regional Development Fund (ERDF). Mr. Liang Sun and Mr. Joseph Patterson are acknowledged for help with TEM analysis. Dr. Anaïs Pittou-Barry and Mr. Daniel Wright are acknowledged for help with DSC measurements.

REFERENCES

(31) Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 2012, 45, 5321.