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Update on designing and building minimal cells
Michael C Jewett1 and Anthony C Forster2
Minimal cells comprise only the genes and biomolecular

machinery necessary for basic life. Synthesizing minimal and

minimized cells will improve understanding of core biology,

enhance development of biotechnology strains of bacteria, and

enable evolutionary optimization of natural and unnatural

biopolymers. Design and construction of minimal cells is

proceeding in two different directions: ‘top-down’ reduction of

bacterial genomes in vivo and ‘bottom-up’ integration of DNA/

RNA/protein/membrane syntheses in vitro. Major progress in

the past 5 years has occurred in synthetic genomics,

minimization of the Escherichia coli genome, sequencing of

minimal bacterial endosymbionts, identification of essential

genes, and integration of biochemical systems.
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Introduction
Design-based engineering of biological systems (also

known as synthetic biology) tests understanding of the

living world and harnesses its diverse repertoire to solve

society’s problems [1,2]. Ideally, an engineered system

should be functionally robust and predictable. Yet these

features are difficult to achieve when engineering biology

[3] because of the poorly understood complexity of even

the simplest single-celled organisms. An enticing way to

simplify cellular complexity, test understanding, and

potentially facilitate engineering is to synthesize minimal

cells [4–7]. Forster and Church reviewed plans of others

to minimize small bacterial cells (in vivo ‘top-down’

approach) [5] and proposed detailed plans for synthesiz-

ing a minimal cell from biomolecular parts (in vitro
‘bottom-up’ approach) [4]. Here, we highlight progress,

challenges, and prospects since these two reviews.
www.sciencedirect.com
New tools
Minimal cells require minimal genomes, and minimal

genomes require design, construction, and manipulation

tools at an unprecedented scale. Great progress has been

made in genome construction by the J. Craig Venter

Institute (JCVI; Rockville, MD, USA). JCVI constructed

the 582 kilobase pair (kbp) genome of Mycoplasma geni-
talium, the smallest known genome of a bacterium

capable of independent growth [8]. This was done by

commercial gene synthesis from oligodeoxyribonucleo-

tides (oligos) and then step-wise assembly. Assemblies of

up to quarter genomes were cloned in vitro in Escherichia
coli bacterial artificial chromosomes, while the final

assembly used recombination in the yeast Saccharomyces
cerevisiae [9]. JCVI further improved the technology by

enzymatic assembly of genes in vitro [10] and by dis-

covering that yeast has the remarkable capability of

simultaneously recombining 25 overlapping DNA frag-

ments to make the complete M. genitalium genome [11�].
More recently, JCVI has developed methods for manip-

ulating and cloning whole genomes in yeast [12] and has

synthesized and transplanted a larger 1.08 million base-

pair M. mycoides JCVI-syn1.0 genome [13��]. JCVI esti-

mates that this overall project [13��] took 200-person

years of work and $40 million. Though sequencing has

become inexpensive, the costs of chemically synthesizing

genes have leveled out at �$0.50/bp, which is prohibitive

at the genome scale for typical researchers. More afford-

able genetic segments may be obtained from native

genomes by restriction digestion or PCR-amplification,

which may limit sequence design, or by improved

methods for assembling genes from oligos [14,15].

In contrast to genome construction, non-viral genome

design and manipulation are still primitive and certainly

cannot be done from scratch. For example, substantial

changes in whole bacterial genomes essentially have been

limited to conservative deletions (see below and [16]),

programming microbes for expression of the anti-malarial

drug artemisinin has taken 150-person years of work [17],

and coordinated overexpression of multiple proteins in a

single cell is difficult to achieve [18]. Optimization and

discovery of new designs will be helped by directed

evolution technologies such as multiplex automated gen-

ome engineering (MAGE; [19��]). MAGE generates

genomic diversity in E. coli by parallel, oligo-directed,

genomic modifications.

Top-down approach: in vivo reduction
Even the most highly reduced genome of M. genitalium
contains 100 individually dispensable genes out of 528

annotated genes [20], so streamlining down to only
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essential genes is one route to minimal cells. So far,

significant minimization has been carried out only in

organisms with larger genomes such as E. coli
(4640 kbp; 4434 genes) and Bacillus subtilis (4216 kbp;

4245 genes) aided by known sequences of closely related

genomes. Genome reduction by up to 30% has proven

surprisingly successful for viability, genome stabilization

[21��], promoting growth [22], and enhancing recombi-

nant protein production [23]. Rather than targeted

deletion, genome reductions of up to 200 kbp can also

result from experimental evolution [24].

The smallest minimized genomes from the top-down

approach will probably be produced by minimizing the

already smallest genome, that of M. genitalium. JCVI has

been pursuing this plan in six ambitious steps:

(i) sequencing the M. genitalium genome [8] (and related

genomes),

(ii) defining its genes that are individually dispensable

[20],

(iii) re-synthesizing the genome from oligos [9,11�],
(iv) transplanting the synthetic (donor) genome into

related Mycoplasma recipient cells [13��,25�,26],

(v) synthesizing from oligos reduced genomes designed

to lack dispensable genes, and

(vi) transplanting these reduced genomes into related

Mycoplasma cells.

JCVI has completed steps (i)–(iv). Step (iv) was particu-

larly challenging because of slow growth rates and

because bacterial genomes engineered in yeast have

DNA restriction/modification systems that are incompa-

tible with the Mycoplasma host cell [26]. To learn how to

transplant and express chemically synthesized genomes

(iv), JCVI ‘booted up’ a synthetic, essentially wild-type,

computer-specified, Mycoplasma mycoides genome

(1080 kbp) in a closely related cell to yield ‘Synthia’

[13��]. This technological milestone marks the dawn of

‘synthetic genomics’ and will undoubtedly accelerate the

engineering of microbial factories, once costs are signifi-

cantly lowered, producing fuels, pharmaceuticals, chemi-

cals, and novel biomaterials (see Prospects for

biotechnology). Notwithstanding the importance of this

achievement, it should not be overinterpreted as syn-

thesis of a cell or life, as standard usage of ‘synthetic’

would imply either cell-free synthesis of the whole cell

(rather than its genome) or generation of something very

unnatural (rather than a genetically modified organism).

The published plan for steps (v) and (vi) is to synthesize a

M. genitalium-based genome lacking all dispensable genes

to boot up a ‘Mycoplasma laboratorium’ cell (last paragraph

of ref. [20]). However, though virtually all genes that are

individually dispensable in M. genitalium have been deter-

mined, it is recognized that a major hurdle is synthetic

lethals (i.e., non-viable cells when two individually viable

mutations are combined [20]).
Current Opinion in Biotechnology 2010, 21:697–703
Three envisioned routes for ultimate reduction in vivo

How may cellular complexity and synthetic lethality be

circumvented to allow top-down production of a minimal

genome? One route is step-wise deletion of the 100 indi-

vidually dispensable genes, perhaps aided by directed

evolution [19��,24]. However, the number of combinations

is astronomical, rational choice of combinations is limited

by poor understanding (e.g., the functions of one fifth of the

genes of M. genitalium remain to be determined), and

considerably less than 100 of the 525 genes are probably

dispensable in combination. There will also be multiple

different minimal genome ‘solutions,’ depending on the

temporal order of deletion. Nevertheless, this will teach us

much about redundancy in biology.

A second route is evident from tables of M. genitalium genes

involved in the core replicative functions of DNA, RNA,

and protein syntheses [4]: these genes are in the minority,

with the majority of M. genitalium genes being involved in

functions such as metabolism of small molecules. Thus, if

additional nutrients were supplied in the extracellular

medium (and perhaps their uptake aided by encoding

extra transmembrane transporters) it may be feasible to

delete many more genes. This could take us down to a truly

minimal, protein-coding cell: one sufficient for replication

but not for metabolism of most small molecules.

Interestingly, development of such extreme metabolic

dependence without loss of genetic independence may

have already occurred in the reductive evolution of the

intracellular bacterial endosymbionts of insects [27].

These recently sequenced symbiont genomes include

the smallest non-organellar, non-viral genomes, Carso-
nella ruddii (160 kbp; 213 genes [28��]) and Hodgkinia
cicadicola (144 kbp; 188 genes [29�]). In contrast to mito-

chondrial and chloroplast evolution, there is no evidence

so far of gene transfer from bacterial symbiont to host [27].

Almost all of the core replicative functions have been

predicted computationally to reside in the symbiont

genome, although notable exceptions are several essential

tRNAs and aminoacyl-tRNA synthetases [27,30]. Ulti-

mate proof of genetic independence can only come from

development of a defined in vitro system for replication of

either a bacterial symbiont or a derivative engineered to

encode any missing essential genes. Such experimental

verification would constitute our third envisioned top-

down route to a minimal genome.

As simple as these minimal cells may seem, it is worth

noting that ‘there is no such thing as a ‘simple’ bacterium’

[31]. Mycoplasma pneumonia (only 816 kbp and 733 pre-

dicted genes) was recently found to have an unanticipated

complexity that is humbling. Many genes have multiple

modes of transcription and complicated regulation [32],

the proteome has a similar organization to more complex

organisms [33], and even metabolic enzymes perform

multiple functions [34]. Furthermore, there is no rapid
www.sciencedirect.com
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or systematic method for determining the functions of the

large numbers of genes of unknown function in any

organism, minimal or otherwise.

Bottom-up approach: in vitro construction
The alternative direction to a minimal cell is bottom-up:

synthesizing self-replication by pooling together essential

purified biological macromolecules, their genes, and their

small molecule substrates [4]. By this approach, cellular

overhead including genes of unknown function can be

removed, the system can be readily manipulated and

tuned, and all of the components can be defined. One

possibility is a DNA/RNA/protein system derived from

the core replication machinery of today’s simplest cells.

The other possibilities are ribonucleoprotein and RNA-

alone systems modeling cells presumed to have existed

billions of years ago [35].

Modeling the RNA world

A self-replicating system made solely from RNA [36] has

the advantage of avoiding altogether the complexity of

protein synthesis. Indeed, the milestone of self-sustained

replication of an RNA enzyme in the absence of protein

was just reached using pre-synthesized half-enzymes as

substrates for ligation [37]. But this system cannot syn-

thesize the half-enzyme substrates that are huge com-

pared with natural small molecule substrates and that

contain all the informational content of the replicating

system. A ribozyme selected from random sequences to

polymerize nucleoside triphosphates on an RNA tem-

plate was published 14 years ago [38] and its 3-dimen-

sional structure just solved [39]. Yet the difficulty in

developing this polymerase capable of adding only 14

nucleotides indicates that evolving it or random

sequences in vitro into an RNA replicase is distant.

A protein-based in vitro minimal cell project (MCP)

A protein-based self-replicating system has the advantage

of connecting with our current biological systems.

Detailed plans to construct protein-based self-replication

from small molecule substrates by combining already-

reconstituted, purified, biochemical processes for DNA/

RNA/protein syntheses [4] are essentially unchanged and

under way. The proposal is to:

(i) identify the necessary genes,

(ii) prepare efficient purified biochemical subsystems

from the gene products,

(iii) integrate the subsystems for self-replication

(Figure 1), and

(iv) encapsulate the system within a membrane to give a

synthetic cell (‘synthetic life’).

Of all the macromolecular components from E. coli and its

bacteriophages, only 151 were hypothesized to be suffi-

cient for the MCP, constituting a minigenome of 113 kbp
www.sciencedirect.com
[4]. Of these 151, it is striking that 96% are for protein

synthesis and that there is considerable similarity in gene

number and content and genome size to the recently

sequenced, extremely metabolic-dependent, bacterial

endosymbionts of insects ([27], see above). An RNA/

protein-based transcription/translation system has been

reconstituted from purified components [40], but the omis-

sion of DNA does not simplify the number of genes that

ultimately will be necessary to encode the whole system for

self-replication. Rather, it creates a new set of challenges

unsolved in the modern world: production of a functional

large RNA genome that avoids inhibitory double-stranded

RNA structures and replicative mutations [35].

Progress in step (i) has been rapid for E. coli (but slow for

M. genitalium [41]). Of the missing 1–4 key ribosomal

RNA (rRNA) modification genes, 3 have just been dis-

covered [42�,43,44]. The gene for modifying transfer

RNA (tRNA) A37 to t6A has also been found and shown

to be essential for E. coli viability [45]. This only leaves as

little as one other gene to find, involved in modifying

tRNA U34 to cmo5U, with 2 genes in that pathway being

already known [46]. Thus, reconstitution from purified

components of every subsystem of the MCP is tantaliz-

ingly near. In an attempt to close perhaps the biggest

remaining gap, we are overexpressing the 5 known key

rRNA modification enzymes [4] to test for activation of

unmodified 23S rRNA transcripts necessary for synthesis

of ribosomes in vitro.

Less progress has been reported on steps (ii)–(iv). With

regard to step (ii), though the E. coli translation apparatus

and ribosome were reconstituted separately from purified

cellular components 3 decades ago, their translational

accuracy is poorly characterized and in vitro efficiencies

of protein synthesis and ribosome turnover remain low in

both purified and crude systems (Table 1). The break-

even milestone for ribosomes making all of the proteins in

the proposed minigenome [4] is synthesis of �35 000

peptide bonds by each ribosome (including 7491 peptide

bonds for the ribosomal proteins). Towards the integ-

ration required for steps (iii) and (iv), bacterial transcrip-

tion initiation has been reconstituted in a purified

translation system [47], purified DNA-dependent tran-

scription and translation has been performed within lipo-

somes [48], and membrane proteins involved in

phospholipid synthesis have been synthesized in active

form in liposomes [49]. But some of the other subsystems

require unphysiological conditions that preclude integ-

ration. Simple systems for DNA replication require ther-

mocycling and oligo primers (PCR or circle-to-circle

amplification [50]), while self-assembly of the E. coli
ribosome from natural components requires low and high

Mg2+ concentrations, high temperatures, and long incu-

bation times [51]. Nevertheless, physiological conditions

for E. coli ribosome assembly have now been found and

rRNA synthesis, ribosome assembly, and translation
Current Opinion in Biotechnology 2010, 21:697–703
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Figure 1

Biochemical subsystems proposed to be sufficient for self-replication from supplied small molecule substrates. Bold arrows indicate steps that have

been largely integrated.The figure is adapted from Figures 1 and 2 of ref. [4].
(Figure 1) have been integrated under batch conditions

(Jewett and Church, submitted). The next steps will be

substitution of the E. coli cells and extracts used for the

macromolecule syntheses by purified subsystems.

How might the efficiencies and utilities of purified sys-

tems be improved? There are some recent indications

that adding genes not on the minimal list [4] should help.

Inclusion of translation elongation factors not present in

PURE kits (Table 1) might improve efficiency and/or

accuracy: EF-P facilitates formation of the first peptide
Current Opinion in Biotechnology 2010, 21:697–703
bond by positioning fMet-tRNAi
fMet [52], and LepA

promotes back translocation of the mRNA–tRNA com-

plex [53�,54]. Comprehensive analysis of the individual

effects of every E. coli protein on purified translation

showed that 344 (8%) were stimulatory [55�]. Most

beneficial were ATP-dependent RNA helicase, HrpA,

and trigger factor, increasing yields by �80% and �30%,

respectively. More than 20 different auxiliary factors are

thought to facilitate ribosome assembly, including cha-

perones, GTPases, and helicases [56]. For example, ATP-

dependent RNA helicase, DbpA, has specificity for 23S
www.sciencedirect.com
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Table 1

Protein yields and costs in cell-free transcription and translation systems from E. coli

E. coli translation system Energy substrates

and cofactors

Reactor

type

Time (h) Protein

product

Protein yield

(mg/mL)

Protein yielda

(AAs/ribosome)

Protein

costb

($/mg)

Reference

S30 extract PEP, NAD, CoA, NTPs Batch 3 CAT 0.75 6 600 16c [61]

S30 extract Glucose, phosphate,

NAD, CoA, NMPs

Batch 3 CAT 0.68 6 000 15c [66]

S30 extract Glutamate, phosphate,

NAD, CoA, NMPs, O2

Batch 2 CAT 1.2 10 560 9c [60]

S30 extract PEP, proprietary mix

(Roche RTS system)

Continuous

exchange

100 GFP 1.00 8 400 370d [67]

S30 extract, condensed CrP, NTPs Continuous

exchange

21 CAT 6.00 26 000 6c [68]

PURE CrP, NTPs Batch 3 GFP 0.30 2 700 2900d New England

Biolabs [69]

Abbreviations: AA, amino acids; PEP, phosphoenolpyruvate; CrP, creatine phosphate; CAT, chloramphenicol acetyl transferase; and GFP, green

fluorescent protein.
a For comparison, E. coli makes �55 000 peptide bonds by each ribosome per cell doubling in 20 min. Concentrations of active ribosomes were

assumed to be 2 mM for ref. [68] and 1 mM for the other systems (assuming �50% ribosomes translating).
b For comparison, in vivo production using E. coli can yield protein at 10 mg/mL media at a cost as low as $0.005/mg [70].
c Estimated cost for labor, equipment, consumables, and reagents.
d Based on kit price.
rRNA [57], and RimJ functions in ribosomal protein

acetylation and in 30S subunit assembly [58]. Choices

for gene addition will be informed by studies such as the

measurement of kinetic effects on 30S assembly of Era,

RimM, and RimP [59]. Also, cytoplasmic mimicry has

been shown to be a powerful guiding principle. Mimick-

ing combined energy metabolism, oxidative phosphoryl-

ation, and protein synthesis in crude extracts increased

protein synthesis yields (Table 1; [60,61]). Activating

natural energy metabolism in crude extracts reduces costs

and suggests that incorporating metabolic modules [62]

into the MCP could further increase utility.

It should be emphasized that genes other than the 151

listed [4] may ultimately prove necessary for self-replica-

tion and that, while the MCP would certainly be helpful

in revealing their existence, such mystery genes would be

hard to identify. Identification may proceed through

traditional biochemical purifications from extracts or by

modern high throughput genetic screens [55�]. Another

challenge looming is how to achieve coordinated control

of so many genes [18].

Prospects for biotechnology
Minimal cell syntheses are still in their formative stages

where the main rewards are new molecular tools and a

better understanding of the core genetic and biochemical

systems necessary for basic life. But applications in bio-

technology are close at hand. Based on the improved

stability, growth, and protein production of E. coli and

other biotechnology workhorses upon reducing their gen-

omes [21��,22,23], further minimized strains should

replace most current commercial bacterial strains. Biotech

applications of reduced-genome M. genitalium are less
www.sciencedirect.com
clear because of its fragility and much slower growth rate

(doubling time in culture of 12 h). However, M. genitalium
has the advantage of having the smallest genome, facil-

itating synthesis of variant genomes, and it is conceivable

that its limitations might be addressed by synthetic

genomics. Synthetic genomics will be particularly helpful

for redesigning microbes for which genetic tools are poor.

The MCP mostly involves synthesis and optimization of

purified translation systems. Such systems have a number

of advantages over alternative methods of protein syn-

thesis such as lack of RNases/proteases/inclusion bodies,

high compatibility with cytotoxic proteins, flexibility of

incorporation of unnatural amino acids, ease of product

purification, and direct control of reaction conditions. The

main hurdle preventing application of the PURE system

in biotechnology is the high cost (Table 1) due to its

production from >30 different fermentations. To address

this limitation, we are developing a cost-effective method

for overexpressing the entire system in a single E. coli cell

followed by single batch purification [18,19��,63]. Selec-

tion of variant 23S rRNAs for improved unnatural amino

acid incorporation [64] could be uncoupled from cell

viability by synthesizing ribosomes in vitro; such variants

would facilitate the directed evolution of peptidomimetic

drug candidates [65].

In conclusion, significant progress has been made in both

the top-down and bottom-up approaches to minimal cells

in the past 5 years. Both approaches are providing new

tools, fundamental biological knowledge, and potential

biotech applications distinct from those garnered from

other fields. Though major challenges lie ahead, the era of

biology by design has begun.
Current Opinion in Biotechnology 2010, 21:697–703
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