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Abstract

Owing to rising levels of greenhouse gases in our atmosphere and oceans,
climate change poses significant environmental, economic, and social chal-
lenges globally. Technologies that enable carbon capture and conversion
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Greenhouse gases
(GHGs): gases such as
CO2 that absorb and
emit infrared radiation
in the wavelength
range emitted by Earth

Chemo-
lithoautotrophs:
organisms that obtain
energy from oxidation
of inorganic
compounds (“chemo”
for chemical reactions
and “litho” for
inorganic chemicals)

Synthesis gas
(syngas): a gaseous
mixture composed
mostly of CO, CO2,
and H2, produced via
partial oxidation of
hydrocarbon
feedstocks or steam
reforming

Autotroph:
an organism with the
ability to grow in the
absence of organic
carbon (“auto” for self,
“troph” for food)

Acetogen: an
organism that uses the
WLP for synthesis of
acetyl-CoA, terminal
electron-accepting and
energy-conserving
processes, and carbon
fixation

of greenhouse gases into useful products will help mitigate climate change by enabling a new
circular carbon economy. Gas fermentation using carbon-fixing microorganisms offers an eco-
nomically viable and scalable solution with unique feedstock and product flexibility that has been
commercialized recently. We review the state of the art of gas fermentation and discuss opportu-
nities to accelerate future development and rollout. We discuss the current commercial process
for conversion of waste gases to ethanol, including the underlying biology, challenges in pro-
cess scale-up, and progress on genetic tool development and metabolic engineering to expand the
product spectrum.We emphasize key enabling technologies to accelerate strain development for
acetogens and other nonmodel organisms.

1. INTRODUCTION

The climate crisis and rapid population growth present two of the most urgent challenges to hu-
mankind. Already, the climate crisis and environmental pollution come with a huge economic toll
(1, 2) and are two of the leading causes of death (3, 4). Intensified need for energy, fuel, and chem-
icals demanded by our growing population over the past 100 years has led to a sharp increase
in the concentration of the so-called greenhouse gas (GHG) CO2 in the atmosphere. We have
now reached the highest atmospheric CO2 concentration our Earth has seen in approximately 3
million years, since before humans existed (2), and this level has continued to rise even despite
the global restrictions on activity imposed during the coronavirus 2019 disease (COVID-19) pan-
demic (5). With appropriate policies, a path exists for decarbonization of the energy sector using
broadly available and commercially proven renewable technologies (6, 7).However, production of
chemicals and energy-dense liquid transportation fuels, particularly for the aviation and maritime
sectors, will remain heavily dependent on fossil resources for the foreseeable future.

Fermentation provides a path for sustainable manufacturing of biochemicals and transporta-
tion fuels, displacing the use of fossil resources (8, 9).Traditional fermentation based on renewable
sugar/starch feedstocks has been carried out at industrial scale for more than a century, including
ethanol production, acetone-butanol-ethanol (ABE) fermentation, and production of amino acids
or organic acids; synthetic biology has extended the product base to many additional metabo-
lites, including 1,3-propanediol, artemisinin, farnesene, and 1,4-butanediol (8, 9). In addition to
using renewable feedstocks, we must use waste resources such as agricultural, forest, and munic-
ipal wastes or off gases produced in many manufacturing processes that would end up as atmo-
spheric GHG or environmental pollutants. Second-generation fermentation processes have been
developed to tackle the complex problem of breakdown of recalcitrant lignocellulosic material
(woody biomass) and use hydrolysates as feedstock, but commercialization is challenging (10).
Gas fermentation provides an alternative route that offers a unique level of feedstock flexibility.
During gas fermentation, a gaseous one-carbon substrate is fermented by chemolithoautotrophic
microorganisms. The gaseous feedstock may be an industrial off gas or synthesis gas (syngas) pro-
duced from the gasification of biomass andmunicipal waste streams, available at impactful volumes
throughout the globe.

2. BIOLOGY OF GAS FERMENTATION

A wide range of autotrophs can use either carbon oxides (CO and/or CO2) or methane (CH4).
For this review, we focus on anaerobic acetogens, because they are already deployed commer-
cially and are considered to have the most efficient of all known carbon fixation pathways (11–13).
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Electron bifurcation:
a third fundamental
mechanism of energy
conservation by
combining endergonic
and exergonic redox
reactions

Several excellent reviews have already been published on the development of other chemolithoau-
totrophic platforms for gas fermentation, including hydrogenogens (14, 15), carboxydotrophs (15,
16), methanotrophs (17–19), and methanogens (20).

2.1. Metabolism

The defining feature of the acetogenic metabolism is the presence of the Wood–Ljungdahl
pathway (WLP; reductive acetyl-CoA pathway) (Figure 1) and its key enzyme, the CO
dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex (21). TheWLP pathway is the only
known linear autotrophic carbon fixation pathway (11–13) and is considered to be the first bio-
chemical pathway on Earth, emerging several billion years ago (long before oxygen entered the
atmosphere) in deep-sea hydrothermal vents (22, 23). In fact, abiotic CO2 reduction (with H2)
to formate, acetate, and pyruvate has been demonstrated under mild alkaline hydrothermal con-
ditions in the presence of just a simple hydrothermal vent alloy, awaruite (Ni3Fe) (24). In the
WLP, these reactions are catalyzed by a series of metalloenzymes with tetrahydrofolate (THF)
as cofactor. Via the action of formate dehydrogenase (Fdh), formyl-THF synthetase, methenyl-
THF cyclohydrolase/dehydrogenase, and methylene-THF reductase (MTHFR), CO2 is stepwise
reduced to a methyl-group in the so-called methyl branch of the WLP. This methyl group is
then transferred from the THF cofactor onto a corrinoid iron-sulfur-containing protein via a
methyltransferase before being fused with a second carbon oxide molecule and CoA to form the
central intermediate acetyl-CoA via the CODH/ACS complex (Figure 1). Pioneered by Harland
G. Wood, Lars G. Ljungdahl, and others, the biochemistry and enzymology of the pathway are
well understood and described in detail in several excellent reviews (25–27).On a genetic level, the
∼15 genes encoding the enzymes of the WLP are typically found in one cluster of ∼20 kbp (28,
29). Considering cofactors, assembly of metal centers, and electron transport, at least 200 genes
are required for autotrophy (29, 30).

The energy for CO2 reduction can be assimilated either from CO (which can serve as both
a carbon and energy source) via biological water gas shift (catalyzed by CODH) or from hydro-
gen (H2) (via hydrogenases). Some acetogens can also use other C1 substrates, such as formate or
methanol (or methyl groups from other sources) (31). Furthermore, functional cooperation be-
tween theWLP and the glycine synthase reductase for autotrophic growth has been demonstrated
(32), and under mixotrophic conditions the WLP enables acetogens to reassimilate CO2 released
during sugar metabolism for increased carbon efficiency (33). A variation of theWLP using differ-
ent cofactors is also present in methanogenic archaea that convert CO2 to biomass and CH4 (34).
TheWLP is unique within autotrophic carbon fixation pathways in that it allows for energy con-
servation (13, 35). The activation of formate in the WLP requires ATP, but this can be recouped
through substrate-level phosphorylation by converting the generated acetyl-CoA to acetate. Ad-
ditional energy can be generated from electron transport coupled to WLP redox reactions. The
exact mechanism has long been an enigma, and a few open questions remain (35). In many ace-
togens, none of the WLP enzymes are membrane associated, and no cytochromes or quinones
are present. In these acetogens, the Rnf complex, a ferredoxin:NAD+-oxidoreductase that was
originally identified in the context of Rhodobacter nitrogen fixation (hence the name), plays a key
role as a coupling site to generate a transmembrane Na+ or H+ gradient (36) (Figure 1). Only
a decade ago, a third fundamental mechanism of energy conservation, electron bifurcation, was
described (37–39). Since its elucidation, several electron-bifurcating enzymes have been charac-
terized across several acetogens (35), including coreWLP enzymes [hydrogenase (Hyd/Hyt)/Fdh
complex, MTHFR] and other enzymes that play a key role in redox balancing, such as transhy-
drogenases (Nfn) (40–43).
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Figure 1

Overview of the
Wood–Ljungdahl
pathway.
Abbreviations: Ack,
acetate kinase; ACS,
acetyl-CoA synthase;
AdhE, bifunctional
aldehyde/alcohol
dehydrogenase; AOR,
aldehyde:ferredoxin
oxidoreductase;
CODH, CO
dehydrogenase;
Co-FeS-P, corrinoid
iron sulfur protein;
Hyd/Hyt,
NAD/NADP-specific
electron-bifurcating
hydrogenase; Fdh,
formate
dehydrogenase;
MTHFR,
methylene-THF
reductase; Nfn,
transhydrogenase; Pta,
phosphotransacetylase;
Rnf,
ferredoxin:NAD+-
oxidoreductase; THF,
tetrahydrofolate.
Figure adapted from
images created with
BioRender.com.
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In addition to acetate, some acetogens can synthesize other products natively, including
ethanol, butyrate, butanol, hexanoate, hexanol, 2,3-butanediol, and lactate (21). Production fol-
lows the same pathways from acetyl-CoA as in other organisms, but some acetogens have the
unique capability of reducing acids to alcohols via an aldehyde:ferredoxin oxidoreductase that can
be coupled with CO and H2 oxidation (44–46) (Figure 1).

2.2. Organisms

Acetogens play a central role in the global acetate cycle, being responsible for the production of
at least 1032 tons of acetate per year in nature (21). Acetogens are ubiquitous in anaerobic envi-
ronments, such as soil, animal and human guts, sediments, the deep sea, and hot springs (21), and
the WLP has also been discovered recently in a facultative aerobe candidate phylum (47). Several
hundred acetogens have been isolated to date, spanning at least 25 different genera and including
psychrophiles, mesophiles, thermophiles, and halophiles (21). For biotechnological applications,
mostly acetogenic clostridia are considered because many species are among the fastest-growing
acetogens, already make products other than acetate, and have been used industrially (e.g., ABE
fermentation) for more than 100 years (48, 49). Clostridium autoethanogenum (50–52) and Clostrid-
ium ljungdahlii (53–55) have emerged as acetogenic model organisms, with Clostridium ragsdalei,
Clostridium coskatii, andClostridium carboxidivorans also seeing significant development (56–58). Al-
though these species are closely related on a genetic level, significant differences in performance
have been observed (56, 57). Besides clostridia, a few other species, includingAcetobacterium woodii,
Moorella thermoacetica, andEubacterium limosum, are also considered for industrial use.A.woodii and
M. thermoacetica only produce acetate natively (21) but are well characterized, as much of the initial
elucidation of WLP biochemistry and energetics was undertaken in these species (35).

3. GAS FERMENTATION PROCESS

Development of any gas fermentation process starts with selection of an organism (biocatalyst)
suitable for the available gaseous substrate and desired subsequent product conversion. The cata-
log of available native organisms continues to grow (see Section 2.2), while in parallel the available
genetic tool kit, and thus product portfolio, is expanding rapidly (see Section 4). For laboratory-
scale gas fermentation research, a standard continuously stirred tank reactor is sufficient, but a
reactor design that maximizes gas solubility while minimizing energetic input is essential to be
economical at commercial scale (59).

3.1. Process Overview

Although sugar fermentations access established, conventional supply chains, they compete for
this feedstock in terms of its value as food. In contrast, gas fermentation facilities require an up-
stream process that delivers a pressurized gas stream, with the average heating value of the gas
setting its price point. This gas stream can be sourced as a by-product of existing large industrial
processes, such as primary steel making and (petro)chemical refining, or can be an intention-
ally generated syngas (Figure 2a). The latter has huge potential as a hybrid thermochemical/
biochemical process in which any carbon-containing waste stream could be converted into a syn-
gas for subsequent biological conversion into products. The rise of renewable electricity further
opens up an exciting integration opportunity to access an even wider range of feedstocks (see the
sidebar titled Power-to-X).
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bpd: barrels per day

MSW: municipal solid
waste

Figure 2 (Figure appears on preceding page)

(a) Overview of the gas fermentation process. (b) Crossing the valley of death is the biggest challenge on the path to technology
commercialization. New commercial fermentation involves developing laboratory technology; deploying pilot, demonstration, and
commercial facilities; and ultimately scaling the technology across eight orders of magnitude. (c) Commercial-scale daily ethanol
production levels and inflow CO gas concentration over a 100-day period. Steel mill off gas contains fluctuating amounts of CO, which
is converted into ethanol by continuous gas fermentation. Data provided by the Beijing Shougang LanzaTech New Energy Science &
Technology Company. Data are from a full-capacity campaign during the year 2020/2021, which lasted more than 200 days. Panel a
adapted from images created with BioRender.com.

POWER-TO-X

Renewable electricity is becoming increasingly abundant and low cost, yet storage is still a challenge (6, 7). There
is increasing interest in leveraging surplus sustainable electricity for production of liquid fuels and chemicals, often
referred to as Power-to-X.One approach is to generate hydrogen, syngas, CO, or formate from either water or CO2

via electrolysis (11), which in turn are feedstocks for acetogens. A particular advantage gas fermentation offers over
other downstream technologies is that it can handle fluctuations in the gas composition, for example, where there is
inconsistency in the supply of electricity. Integrated systems of electrolyzer and gas fermentation have already been
demonstrated to achieve high faradaic and carbon efficiencies (80, 196). Some acetogens can also use electricity
directly in a process called microbial electrosynthesis (197, 198).

Syngas is an industrial chemical synthesis feedstock commonly used to produce ammonia,
methanol, and synthetic petroleum products. By using the Fischer–Tropsch (FT) process, metal
catalysts (cobalt, iron, and ruthenium) have been used commercially since 1936 to convert syngas
to hydrocarbon products, preferably alkanes.Commercial FT processesmainly use fossil resources
to produce hydrocarbon products at massive scale to be economical: The Shell Pearl GTL (gas-
to-liquids) plant in Qatar produces up to 140,000 barrels per day (bpd) from an enormous natural
gas well (60). More recently, municipal solid waste (MSW) feedstocks have been developed for
FT conversion, with Fulcrum Bioenergy reporting <1,000 bpd fuel production. The growing ur-
gency for carbon emission reduction has driven the use of sustainable resources, such as unsorted
and nonrecyclable MSW and agricultural waste. These aboveground feedstocks bring economic
challenges, as they are geographically highly distributed and the produced syngas has variable
macro composition, with various unwanted by-products that can irreversibly inhibit catalyst reac-
tions (61). The fluctuating syngas composition resulting from more variable feedstocks is ideally
suitable for gas fermentation by the feedstock-flexible acetogenic bacteria that produce products
with high selectivity (62).

The compositional variability in the macro components (CO, H2, CO2, N2, and CH4) of syn-
gas and industrial waste gases is a consistent reality with these gas streams and reflects changes
in feedstock composition (especially when using low-grade variable waste feedstocks) or process
conditions. This compositional variability is also reflected in fluctuating gas contaminants such as
heavy metals, aromatics (benzene, toluene, ethylbenzene, and xylenes), various sulfur species (H2S,
COS,CS2), ammonia, nitric oxides, acetylene, reactive oxygen species, and hydrogen cyanide (61).
Gas fermentation processes have shown elevated tolerance to typical gas contaminants compared
with traditional supported-metal catalysts (63, 64). Although similar to FT catalysis, gas fermen-
tation relies on metal-containing catalysts, in this case metalloenzymes, for conversion of gases
to products; however, the catalyst poisoning risk is mitigated as these enzymes are continuously
regenerated.Where sulfur irreversibly inactivates FT metal catalysts, it is an essential nutrient for
gas-fermenting organisms whose enzyme comprises metal–sulfur active centers. The economic
implications of key process requirements and parameters of FT catalysis versus gas fermentation
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have been summarized elsewhere (62). In summary, continuous gas fermentation operates at low
temperature and low pressure, is feedstock flexible, and has shown high tolerance to gas contam-
inants while maintaining high product selectivity.

Unlike traditional sugar fermentations carried out in (fed-)batch mode, gas fermentation
typically operates as a continuous production system for several weeks and even months
(Figure 2c). The continuous biocatalyst wash-out and renewal rate are an inherent feature of any
biological continuous process. A continuously growing organism elevates the process tolerance to
upsets and limits gas contaminant accumulation to a certain extent, thus reducing gas treatment
requirements, which in turn saves operating costs. A growing organism continuously adapts to
local process parameters; production titers can be elevated over time. The advantage of natural
selection is knowingly used in other continuous biological systems, from long-term sourdough
cultures to wastewater treatment plants, in which final clarifier sludge is recycled back to promote
microbial community growth of site- and seasonally adapted organisms.

Although chemical catalytic processes are generally considered faster and more reliable than
biological conversions, the latter allow near-complete conversion efficiencies, owing to the irre-
versible nature of biological reactions (65, 66). A well-developed biological conversion can achieve
high reliability, whereas the high enzymatic conversion specificities result in higher product se-
lectivity with the formation of fewer by-products compared with chemical processes.

3.2. Scale-Up and Commercialization

The journey to develop, deploy, and commercialize technology is arduous and long, and many
technologies fail to cross the so-called valley of death (Figure 2b). Getting a new process to scale
has many challenges that are not limited just to technology development. Great ideas require
financing, data, and time to bridge the valley. Several recent reviews describe the biocatalysts,
approaches, and companies involved in efforts to commercialize gas fermentation technology (62,
67–69).We review earlier efforts and concentrate onmore recent commercially realized outcomes
and practical considerations.

Briefly, syngas fermentation was a research topic in the early 1980s, and initial syngas fer-
mentation research and development explored ways to add value to fossil resources (e.g., coal)
for liquid fuel additives and provide energy security. The potential of anaerobic bioconversion
technology was recognized as being ripe for scale-up research and development in the 1990s
via development and application of new biotechnology approaches (70). Early applied biocatalyst
development identified strain improvements for elevated productivities using model syngas and
methanol-consuming anaerobes; these efforts included isolation of bacterial strains from acidic
and marine environments with higher alcohol yields and tolerance. Methanol, ethanol, and iso-
propanol were among the top three organic solvents from syngas identified based on their oc-
tane values. In 1989, Professor James Gaddy (University of Arkansas) demonstrated the feasibility
of gas fermentation technology for ethanol production. Bioengineering Resources, Inc. (BRI),
piloted the University of Arkansas technology in Fayetteville, Arkansas, in 2003. Subsequently,
INEOS Bio acquired the BRI rights to commercialize their technology in 2008. Then, in 2011,
the INEOS New Planet BioEnergy commercial venture involved gasification waste streams from
construction MSW, forestry, and agriculture, but it halted operations by 2016 with challenges re-
lated to reports of high levels of hydrogen cyanide in syngas (64). Coskata, formed in 2006, was
another gas fermentation–to–ethanol company that initially used syngas from biomass gasifica-
tion for cellulosic ethanol. Later, Coskata sought to use reformed methane to generate syngas
with H2:CO ratios between 2:1 and 3:1; however, it ceased operation in 2015, and its technology
was later acquired by Synata Bio.
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gpy: gallons per year

In 2005, Dr. Sean D. Simpson and Dr. Richard Foster founded LanzaTech in New Zealand,
where they selected and adapted a culture C. autoethanogenum using classical microbiological tech-
niques at the bottle scale and laboratory continuously stirred tank reactors with CO-rich steel-
mill off gases as the carbon and energy sources. In 2008, an important milestone was reached with
the installation and operation of a 500-L pilot fermenter located at a steel mill site to further
develop and scale the gas fermentation process (Figure 2b). Past reviews (62, 64) describe the
sites and scales of earlier demo units in some detail. In 2014, LanzaTech relocated its headquar-
ters to Skokie, Illinois. In May 2018, gas fermentation successfully started continuous production
(Figure 2c) at the Beijing Shougang LanzaTech New Energy Science & Technology Co., Ltd., a
joint-venture commercial operation with a capacity of 16 million gallons per year (gpy) of ethanol.
A second commercial-scale facility is due to be mechanically complete by Q2 2021 in China, with
more plants due for completion soon thereafter, including at an ArcelorMittal steel mill site in
Ghent, Belgium (71), and at an Indian Oil Company refinery site in India. To further highlight
feedstock flexibility, two gasification projects are being built: In 2017, after three years of develop-
ment, Sekisui Chemical ( Japan) and LanzaTech announced high-efficiency production of ethanol
fromMSW. In April 2020, Sekisui (72) announced the formation of a joint venture, SEKISUI Bio
Refinery CO.,Ltd., and built a verification plant at one-tenth (∼20 t/day)MSWvolume processed
at a standard-scale waste disposal facility. In September 2020, LanzaTech announced a partner-
ship with Mangalore Refinery and Petrochemical Ltd., one of India’s largest refiners, and Ankur
Scientific to gasify agricultural residues into 5.3 million gpy of ethanol. This biomass gasification
approach is distinguished by its use of simple air-blown gasifiers that permit low-cost distributed
systems and biochar coproduction (73). The projects above highlight the rapid deployment of gas
fermentation across various industries.

4. CHEMICALS PRODUCTION

The initial application for ethanol produced from these first large-scale units is as a gasoline-
blending component in the road transportation sector. In many of these regions, gasoline con-
sumption is falling and ethanol production is increasing, so bio-ethanol will be used increasingly
in other supply chains. This includes as a feedstock for jet and diesel fuel synthesis (69): Blends
of gas fermentation–derived jet fuel have obtained ASTM certification, and a first commercial
flight was undertaken in October 2018 (74). Ethanol produced from gas fermentation can also
meet the specifications for chemical applications and is already used in consumer products such
as cleaners (75). Moreover, ethanol is an ideal chemical building block that can be converted into
a variety of downstream products via catalytic upgrading, as described by recent reviews (76–78).
Many products can be made from ethanol using ethylene as an intermediate via established chem-
ical conversions. Ethylene oxide and ethylene glycol can be used in the production of PET, the
world’s most-used thermoplastic. Gas fermentation–derived PET has been introduced into the
market recently (79). The coupling of ethanol to produce butanol, butadiene, or paraxylene is
an active research area. Any application of bio-ethanol other than for fuel blending will require
purification. There is also an opportunity to biologically upgrade ethanol and acetate either in a
second stage or directly as coculture, e.g., using chain-elongating microorganisms (62, 80). The
biomass by-product from the gas fermentation process is a good source of protein and is currently
used as such in animal feed formulations (81, 82).

Synthetic biology offers a real paradigm shift, enabling direct production of an array of
molecules from gas streams using engineered biocatalysts. Just a decade ago, acetogens were
thought to be genetically inaccessible, but scientists now have a comprehensive suite of tools at
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Figure 3

Status of (a) genetic tool development and (b) metabolic engineering in industrially relevant acetogens in the literature. (a) The most
advanced tools for acetogens are available for Clostridium autoethanogenum and Clostridium ljungdahlii. (b) There are several examples of
successful metabolic engineering in acetogens. In each case, production has been demonstrated from gas as feedstock. Whereas several
products have been demonstrated only to a proof of concept for production, in several examples in the literature, production has been
optimized to a higher level of performance. Abbreviations: 2-PE, 2-phenylethanol; 3-HB, 3-hydroxybutyrate; 3-HP,
3-hydroxypropionate; BDO, butanediol; CFU, colony-forming unit; CRISPR, clustered regularly interspersed short palindromic
repeats; CRISPRi, CRISPR interfering system; KO, knockout; MEK, methyl ethyl ketone; N/A, not available; PHB,
polyhydroxybutyrate; PHBA, para-hydroxybenzoate; WLP,Wood–Ljungdahl pathway. Figure adapted from images created with
BioRender.com.

their disposal (especially for C. autoethanogenum and C. ljungdahlii) for metabolic engineering and
have greatly broadened the range of potential products from gas fermentation (Figure 3).

4.1. Genetic Tool Development

4.1.1. Gene expression and genetic parts. Introducing foreign DNA to cells is typically the
first step in establishing any genetic system. Traditionally, this can be achieved by either conjuga-
tion, which normally uses E. coli as a donor (45, 83), or electroporation. Key hurdles to overcome
include restriction-modification systems that are prevalent in acetogens.Methylation patterns can
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be identified by single-molecule, real-time sequencing to devise improved transformation strate-
gies that mimic native DNA modifications (84, 85). Today, transformation protocols exist for a
range of acetogens (54, 86–88) (Figure 3). The best efficiency, reported at 104 CFU (colony
forming units) per microgram of DNA (86), is still too low to enable transformation of linear
DNA fragments or suicide plasmids, which prohibits creation of direct genetic engineering meth-
ods (e.g., plasmid assembly and genome modification) that are possible in model systems such as
E. coli or yeast.

Since the first report of heterologous gene expression in an acetogen in 2010 (54), a suite
of native and synthetic promoters (including inducible systems), terminators, and other genetic
parts have been developed for acetogens (Figure 3). Different reporter gene systems have been
developed for acetogens to validate promoter strengths. However, most of these systems require
downstream processing to develop signals and cannot be applied in vivo. Recently, three anaerobic
fluorescent systems were reported that allow for real-time studies and open up high-throughput
possibilities (89, 90). When actively bound to a fluorogenic ligand, FAST (fluorescent-activating
and absorption-shifting tag) protein is highly fluorescent under anaerobic conditions. The ligand
binding is reversible in the FAST reporter system; therefore, cells can be sorted using fluorescent
and washed and incubated for additional rounds of experiments. Two other proteins,HaloTag and
SNAP-tag, were shown to be highly fluorescent when covalently bound to fluorogenic ligands
under anaerobic conditions in C. ljungdahlii. All three systems work orthogonally and therefore
can be used to study different protein expressions in the same cell simultaneously, or to study
mixed-cell populations in real time (90).

4.1.2. Genome modification and mutagenesis. One of the earliest methods applied to ace-
togens for stable gene interruption was based on group II intron–directed mutagenesis (dubbed
ClosTron) (91, 92). Although applicable to a wide host range, the method is limited by its cargo
size (up to 1 kb in addition to a selection marker), gene modification capabilities, and potential
instability introduced by multiple rounds of ClosTron insertion (93), which led to development
of other tools based on homologous recombination (HR) (Figure 3). Low transformation effi-
ciencies and rare integration success rates make it difficult to obtain double-crossover mutants for
gene knockout or knockin in acetogens without the use of a replicative plasmid vector and mostly
result in single-crossover mutants with an unstable genotype (94–97). To date, only one successful
gene knockout has been reported using non-replicative vector in acetogen (86).

A suite of counterselection markers was developed to select for the rare occasion of the second
crossover event in Clostridium species (reviewed in 64). Most counterselection methods require
selection of a single-crossover event, or deletion of the gene responsible for conferring sensitivity
of themarker, followed by selection of double-crossovermutants with the desired genotype and/or
loss of the counterselection marker. Two methods, allele-coupled exchange and triple crossover,
which are reviewed extensively elsewhere (64), combine multiple counterselection and positive
selection markers to achieve long DNA integration and/or scarless gene deletions (98). Many of
the counterselectable markers require either a mutant host strain or the use of a toxic agent that
may inhibit growth rates. One alternative system to select and force rare double-crossover events
in clostridia is to introduce double chromosome breaks using I-SceI, an intron-based endonuclease
that recognizes an 18-bp sequence, originally identified in the yeast Saccharomyces cerevisiae (99).
Owing to the long recognition site, it is very rare to find I-SceI target sites in bacterial genomes.
Statistically, it occurs once in every 6.9 × 1010 bp. It was demonstrated successfully in different
clostridia for scarless gene knockout and for introducing point mutants (100).

Clustered regularly interspersed short palindromic repeats (CRISPR)-based systems (see
Section 5.1) and phage integrase-assisted integration offer promising alternatives for genome
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engineering, specifically in the context of pathway prototyping (Figure 3). Phage integrases have
previously been used in combination with HR for antibiotic cassette recycling, such as the Cre/lox
system (101) and FLP recombinase (92). Most recently, a butyric acid synthesis pathway (8.5
kb in size) was successfully integrated into C. ljungdahlii, facilitated by a phage integrase system
(102). Chassis-independent recombinase-assisted genome engineering (CRAGE) (103, 104) was
demonstrated to integrate DNA up to 48 kb in various proteobacteria and actinobacteria. The
CRAGE recombinase system can be combined with a transposase delivery system to randomly
insert a landing pad—consisting of mutually exclusive lox sites and a Cre recombinase—into a
recipient strain. The genes of interest, which are also flanked by lox sites, are then introduced
into the recipient strain with the landing pad. The pathway integration is facilitated via Cre
recombinase between the lox sites with high efficiencies. The advantage of this system over
other gene integration tools discussed above is its efficiency and ability to insert large cargo.
Unlike plasmid-based systems for metabolic engineering, this system generates a stable genotype
and reduces cell-to-cell variance. Another system that uses serine recombinases isolated from
different phages offers similar advantages over other traditional HR tools (105). Unlike the
Cre recombinase, which recognizes identical sequences for recombination, these recombinases
catalyze unidirectional genome integration through two different recognition sites. A landing
pad with multiple serine recombinase recognition sites can be inserted into the genome of a
recipient strain, after which (pathway) genes of interest can be introduced to the chromosome
via corresponding serine recombinases. This method offers a stable genotype for pathway proto-
typing and unlocks the potential for multiplex genome editing. Both phage recombinase systems,
in combination with a transposon delivery method, can be used to probe for advantageous
integration sites that may offer better production yields and titers.

Most genome modification efforts in acetogens have focused on targeted modifications. Ran-
dommutagenesis based on transposable elements (randomly inserting itself into the chromosome)
offers a top-down approach to study essential genes/pathways and/or to isolate mutants for certain
phenotypes but has not been deployed broadly in acetogens to date (Figure 3). No prior knowl-
edge of whole genome sequences or gene structures is required for transposon insertions; however,
a clear goal and screening protocol are necessary to successfully screen for mutant(s) with desired
phenotypes. An acetone pathway was integrated into the C. ljungdahlii chromosome, aided by the
Himar1 transposase (106), and previously the same transposase was shown to randomly insert the
chloramphenicol acetyltransferase (catP) marker gene into the C. difficile chromosome with high
efficiency (107, 108). These results suggest that the transposon system can be applied to acetogen
for forward genetic studies.

4.2. Metabolic Engineering

Even in the context of a still-developing genetic toolbox, there are already several examples of
successful metabolic engineering in acetogens to (a) reprogram metabolism to expand the prod-
uct portfolio and (b) improve efficiency by eliminating competing pathway(s) and by-products or
enhancing substrate use, end-product tolerance, and robustness (Figure 3).

Proof of concept for direct production of more than 50 different chemicals from gaseous feed-
stocks has been demonstrated (62, 64) (Figure 3). Notably, several have achieved industrially rel-
evant performance levels with production rates in the g/L/h range and titers at the tens of g/L
level. LanzaTech has developed an acetone production strain and process with commercial-ready
levels of performance (109). Acetone pathway genes (thlA, ctfA, ctfB, adc) were selected from a
combinatorial library with sequences identified from a commercial ABE fermentation strain col-
lection spanningmore than four decades of work (49).The pathway genes were integrated into the
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C. autoethanogenum chromosome, and subsequently, competing pathway genes encoding enzymes
for 2,3-butanediol (2,3-BDO) and 3-hydroxybutyrate (3-HB) production were deleted (109). The
combinatorial library consisted of ∼250 unique pathways, and the final acetone production strain
included more than five genomic modifications, both the most reported in an acetogen to date.
Similarly, White Dog Labs has developed a C. ljungdahlii engineered acetone production strain
that produced up to 2 g/L/h acetone using anaerobic, non-photosynthetic (ANP) mixotrophy
technology (110). Isopropanol, 3-HB, and butanol (see Section 5.2) (111) are further examples
produced at high titer and rates. In many cases, chromosomal integration has been critical for pro-
duction and process stability and avoids the requirement of antibiotics for plasmid maintenance.
It remains to be tested empirically whether one integration site is better than others regarding
titer, productivity, and selectivity.

Beyond these C2-C4 molecules, feasibility for direct synthesis of more complex and
longer carbon chain products has been demonstrated, including isoprene (112, 113), C6-
C14 fatty alcohols, and 2-phenylethanol (114). A key challenge in optimizing fatty al-
cohol production was the interaction between the heterologous pathway and the cell’s
own amino acid synthesis metabolism. Guided by genome-scale and kinetic modeling (see
Section 5.3), candidate genes/pathways generating undesirable by-products were identified and
removed to further improve fatty alcohol production in the host strain (114).

Significant work has also been carried out to improve the biocatalyst, including optimizing flux
through the WLP (115) or generating vitamin prototrophic strains (116). A holistic approach,
including gene variants analysis (combinatorial library), multi-omics studies, and computational
modeling, will greatly assist in understanding physiology and improving the process for better
production yield and titer.

5. ENABLING TOOLS TO ACCELERATE DEVELOPMENT

A range of new enabling tools are now available to accelerate development of next-generation
strains and enable more parallelized development (Figure 4a). CRISPR-based engineering tools
have largely been heralded as a breakthrough technology and open up new engineering opportu-
nities for previously difficult-to-engineer organisms, including multiplexed genome engineering.
To develop efficient production strains, exploration of a large design space is critical. This can be
achieved by implementation of high-throughput, automated workflows realized in biofoundries,
which is not trivial given the requirement for anaerobic conditions and gaseous substrates. Ad-
vances in cell-free technologies now enable pathway prototyping in vitro to inform in vivo design.
Predictive models, enabled by the growing pool of omics data, help to further reduce the design
space. Retrobiosynthesis further allows generation of optimized pathways. Together, these tools
form a powerful approach to enhance the speed of engineering acetogens and are broadly appli-
cable to other nonmodel organisms.

5.1. CRISPR Genome Editing

Most characterized CRISPR systems have protospacer-adjacent motif (PAM) requirements that
restrict nuclease activity unless a short, specific sequence is present in regions immediately flanking
those recognized by the guide RNA (117). The CRISPR system from Streptococcus pyogenes, well-
known as Cas9, has been engineered with a simplified (single) guide RNA (sgRNA) system and
repurposed toward creating a double-stranded DNA break (DSB) proximal to DNA sequences
that meet its sgRNA and 5′-NGG-3′ PAM requirement (118). Owing to Cas9’s ease of use and
relative orthogonality, this system gained traction in the genome engineering community, and
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(a) New enabling tools are now available to accelerate strain development. (b) CRISPR technologies speed up host engineering, in
particular where multiplexing can be realized. (c) Cell-free prototyping accelerates part and pathway prototyping. Cell extracts enable
rapid prototyping of genetic parts and metabolic pathways using small-scale, high-throughput experiments to provide a more efficient
testing platform than slow-growing cells, which can result in highly optimized strains in significantly less time. Abbreviations: CRISPR,
clustered regularly interspersed short palindromic repeats; CRISPRi, CRISPR interfering system; ORF, open reading frame; RBS,
ribosomal binding site; sgRNA, single guide RNA. Panels a and b adapted from images created with BioRender.com.

efforts to reduce or remove Cas9 enzymatic activity, such as inactivating the nuclease domain
(Cas9-Nickase), have led to additional tools, such as generation of single-stranded DNA nicks,
gene silencing via CRISPR interference (CRISPRi), and gene activation via CRISPR activation
(CRISPRa) (119–121).

Toward targeted genome editing, Cas9 can be employed to generate a DSB at a specific loca-
tion that opens that site for modification. Generally, cells have two mechanisms to repair DSBs
in DNA: HR, which requires the presence of template DNA, and nonhomologous end-joining
(NHEJ), so-named because it does not require a homologous template to join ends of DNA (122).
NHEJ is the preferred DSB repair mechanism for eukaryotes, but few prokaryotic NHEJ systems
have been identified to date (122). Lack of NHEJ creates a burden on prokaryotic genome editing
by Cas9, in that it requires (depending on the strain) >50 bp of template DNA per target for HR
to be transformed alongside Cas9; otherwise, DSBs in prokaryotes are lethal. Cas9-Nickase uses a
mutated Cas9 to generate a single-stranded nick in the DNA sequence without eliciting the severe
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lethality brought by a DSB (123). Both Cas9 and Nickase have been employed, alongside homol-
ogous template DNA, to force HR enabling site-specific chromosomal mutagenesis, knockin and
knockout. This general method has been used at 50–100% efficiency and in a rapid workflow in
several acetogens, including C. autoethanogenum (124),C. ljungdahlii (125), and E. limosum (126), as
well as many other clostridia species (127) (Figure 4b).Gene transfer has been managed mostly
through HR of replication-defective plasmids, which has been notoriously inefficient, unstable,
and difficult to reproduce (98). The employment of Cas9 as a tool for increased HR efficiencies
is a major advancement for editing intractable bacterial genomes.

Because prokaryotic immune systems are the source of the CRISPR revolution, some research
groups have recognized that native Cas systems can be hijacked for genome engineering. It has
been estimated that ∼50% of bacteria and 74% of clostridia harbor endogenous CRISPR-Cas
systems (128, 129). Repurposing these systems involves identification of Cas enzymes and PAM
requirements and engineering of a CRISPR array or the more complicated process of designing a
synthetic sgRNA (129). When the endogenous system is provided a targeted CRISPR array, or a
correctly designed sgRNA, and template DNA for HR, it will recode at the directed site; this has
been demonstrated in several clostridia and severalmodel prokaryotic organisms (129–131).When
it comes to bacterial genome engineering, endogenous Cas systems are somewhat preferred, as the
constitutive presence of the native enzymes decreases the burden on the length of DNA necessary
for transformation, reduces toxicity caused by off-target Cas9 activity, and removes the metabolic
cost of heterologous protein expression (132–134).

The Cas9 enzyme has been engineered by two point mutations (D10A and H840A) to lose all
endonuclease activity while maintaining DNA-binding specificity (120). This catalytically dead
mutant (dCas9), co-expressed with sgRNA, is well-known as the CRISPRi (120). When sgRNA
directs dCas9 just upstream of protein-coding regions (e.g., the promoter region), dCas9 can ster-
ically block RNA polymerase and trans-acting transcription factors from initiating transcription,
thus preventing gene expression (120). When targeted to the non-template (coding) strand of an
intragenic region, CRISPRi prevents transcriptional elongation; however, this process tends to be
less effective at reducing gene expression than employing dCas9 to sterically prevent initiation
by RNA polymerase (120, 135). Lacking endonuclease activity, deployment of CRISPRi neither
results in heritable genomic alterations nor necessitates inclusion of HR template DNA. Plasmid-
based dCAS-sgRNA expression systems can be directed to a genomic position through a simple
∼20-bp change of the sgRNA, which can be generated via polymerase chain reaction (136). The
degree of gene-expression knockdown by CRISPRi can be engineered by altering sgRNA expres-
sion, length of sgRNA complementation, dCas9 expression, and sgRNA targeting location relative
to the gene of interest and by employing multiple sgRNAs to stack an effect (120, 135). The tun-
ability and inducibility of CRISPRi knockdown serve to prevent total loss of gene function, which
enables perturbation of essential genes without causing cell death and allows for elucidation of
segments of the genome that were once inaccessible (137) (Figure 4b). Polar effects on genes
organized in operons represent one drawback of the CRISPRi system (138). Thus far, CRISPRi
has been demonstrated in acetogens C. autoethanogenum (139) and C. ljungdahlii (140) [among
other clostridia (127)] and E. limosum (126). An endogenous Cas system has been rendered inac-
tive and repurposed for gene silencing in Escherichia coli through deletion of catalytic parts of the
Cas complex (141). Its ease of use, undemanding cloning requirements, and tunable knockdown
capabilities have contributed to make CRISPRi an ideal system for investigating gene function in
bacteria.

CRISPRi’s effectiveness, and orthogonality have facilitated deployment of the system as a
genome-wide library screening tool for studying functional genomics in bacteria (142–144).
CRISPRi libraries allow simultaneous, unbiased targeting of every gene through a single screening
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process, which has been used to create essential gene network maps and characterize gene func-
tion under a wide variety of conditions (142–144). CRISPRi libraries outperform similar gene-
phenotype mapping methods, namely transposon insertion sequencing (Tn-seq), as they do not
carry a bias toward long-coding genes and offer flexibility in design, enabling study of a subset of
genes rather than always being applied at a genome-wide scale (143).The off-target effects of Cas9
systems are well-reported; less reported and seemingly more difficult to observe are off-target ef-
fects of CRISPRi systems (144). Using a CRISPRi library in E. coli, Cui et al. (144) reported that
sgRNAs with as little as 9 bp of complement can elicit off-target effects. Increased confidence
in gene-phenotype specificity can be reached through strict sgRNA design principles that restrict
off-target responses in the upstream regions of other genes and through redundant gene targeting
by multiple sgRNAs in a CRISPRi library.

The CRISPRi system has been modified for purposes outside of single-gene repression in
prokaryotes. Recently, the creation of nonrepetitive sgRNA handles enabled targeting of more
than a dozen operons within a single cell, which was demonstrated by redirecting carbon use in
E. coli (145). The ability to interrogate multiple knockdown genotypes through a single transfor-
mation enables discoveries that previously would have required generations of passaging, creation
and curation of multiple plasmids, and weeks of time to achieve in bacteria (Figure 4b).

One major drawback of Cas9 for engineering AT-rich organisms such as clostridia is the low
frequency of the Cas9 PAM (5′-NGG′3′), resulting in PAM deserts in the genome (146, 147).
Hundreds of other Cas proteins have been verified through reviews of metagenomic pipelines,
and hundreds of thousands of putative Cas proteins have been annotated (148). Many of these
Cas proteins could be repurposed as tools, similarly to the way Cas9 has been described in this
review and highlighted with a few descriptions of endogenous Cas redeployment. A frequently
adapted system is Cas12a (Cpf1) from Acidaminococcus sp., for which the PAM recognition site
(5′-TTTN-3′) is well-suited for clostridia (146, 147). The CRISPR/Cpf1 system has been used
for genome editing in several clostridia (127), including the acetogen C. ljungdahlii (149). Unlike
Cas9, which exhibits no activity past binding to its sgRNA, Cpf1 processes its CRISPR RNAs
into sgRNA, which enables a singly expressed handle alongside multiple 20-bp spacer sequences
to become many sgRNAs, making this system amenable to multiplexing (150).

The field of Cas enzymes is expected to continue to grow, with companies and academics seek-
ing to mine data for new and interesting enzymes. Extra-small Cas enzymes, Cas enzymes without
PAM requirements, and Cas enzymes able to execute new functions (such as DNA shearing versus
cutting) have all been discovered but have yet to be adopted by the genomic engineering commu-
nity. Novel and interesting enzymes likely will continue to emerge in the coming years.

5.2. Automation

Automation and biofoundries have transformed the speed at which model organisms can be en-
gineered (151) but require adaptation for other systems. A particular challenge in working with
acetogens is the requirement for anaerobic conditions and gaseous substrates.Only very few high-
throughput workflows exist for acetogens or clostridia, and the largest reported combinatorial
pathway or promoter libraries are all within 250 designs (109, 152, 153). Automation equipment
typically requires a significant footprint, yet maintaining a large oxygen-free space is challenging.
Although genetic modifications can be carried out using heterotrophic substrates, screening is
ideally performed under relevant conditions using gaseous substrates, which adds additional com-
plexity, in particular in working with flammable and toxic gases such as H2 and CO. Yet, the first
fully integrated anaerobic biofoundry for acetogens, capable of generating and screening thou-
sands of strains per cycle, is now in operation (62).
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5.3. Cell-Free Prototyping

Strain engineering efforts can be expedited through use of cell-free systems, in which bi-
ological machinery is harvested after cell lysis to separate biochemical functions from the
cells’ semipermeable membranes and viability constraints. The open reaction environment and
lack of growth requirements in cell-free systems enable high-throughput testing of genetic
parts, individual enzymes, and metabolic pathways without inefficient DNA transformation or
conjugation techniques (Figure 4). This flexibility has enabled myriad cell-free applications
in E. coli extract for gene expression (154). Particularly useful examples of cell-free proto-
typing to accelerate strain development include (a) high-throughput characterization of ge-
netic regulatory elements and circuits to identify reliable expression architectures (155, 156);
(b) testing of CRISPR system components, including nucleases, guide RNAs, anti-CRISPR pro-
teins, and PAMs (157); and (c) prototyping of metabolic pathways with the ability to test hundreds
to thousands of enzyme variants and combinations in weeks rather than months (111, 158).

Metabolic prototyping efforts enable small-scale optimization prior to strain development.
This is exemplified by the cell-free conversion of whey permeate waste to polyhydroxybutyrate
(PHB), in which several PHB operons were tested in vitro prior to expression in vivo with
E. coli grown on the same industrial waste (158). The cell-free reactions successfully identified
the highest-yielding PHB operon in vivo and indicated a potentially beneficial accessory enzyme.
Cell-free prototyping has also proven useful in the development of nonmodel industrial strains, as
demonstrated by the successful use of E. coli extract to inform engineering of C. autoethanogenum
for the production of 3-HB and butanol (111). Enzyme homologs from several species were pro-
duced through cell-free gene expression and combined to reconstitute the biosynthetic pathways
in vitro. In total, more than 50 pathway combinations were evaluated for 3-HB, and more than
200 pathways were evaluated for butanol. The most productive 3-HB strain was then grown on
syngas at pilot scale and exhibited a 20-fold improvement in product titer without any genomic
modifications to increase pathway flux.These endeavors provide powerful examples of industrially
relevant improvements made in production strains through rapid cell-free prototyping. To facili-
tate, the workflow a newmodular vector system has been developed that enable seamless shuttling
of DNA between in vitro and in vivo experiments (159).

In addition to E. coli extract for in vitro gene expression and biochemical transformations, cell-
free systems have been developed using nonmodel organisms from diverse bacterial genera, in-
cluding Bacillus (158),Clostridium (160), Pseudomonas (161, 162), Streptomyces (163, 164), and Vibrio
(165). A cell-free platform for Bacillus megaterium provided the first large-scale analysis of ribo-
some binding sites and promoters for this underused species, with a lengthy transformation pro-
cedure but significant advantages for biotechnology, such as a native secretion system (166). Cell-
free prototyping can also capitalize on the microbial world’s rich metabolic diversity by employing
mixtures of cell extracts to create hybrid systems with unique biotransformation capabilities (167).
Most recently, a C. autoethanogenum cell-free platform was established that can produce up to 320
µg of protein per ml in semicontinuous transcription/translation reactions, which enabled rapid
screening of genetic parts (160). Together, cell-free systems from E. coli and nonmodel organ-
isms will expedite engineering efforts in gas-fermenting microbes by increasing the throughput
of genetic part characterization and accelerating development cycles for metabolic pathway opti-
mization tomore efficiently produce industrial strains that convert waste gas to chemical products.

5.4. Omics and Modeling

The expansion of systems biology approaches over the past decade laid the groundwork for greatly
increasing the understanding of acetogens on bothmolecular and systems levels.The foundational
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element was completion of whole genome sequencing/assembly for a variety of acetogens, which
permitted data mining and comparisons of the molecular machinery these organisms deploy (29).
The extension into functional genomics (transcriptomics, proteomics, and metabolomics) com-
plements genomics by providing methods to examine the discrete and operational metabolic ac-
tivities under a variety of growth conditions and states. For example, the first integrated omics
study including transcriptome, metabolome, and proteome analyses of C. autoethanogenum was
published in 2016 (50). This study demonstrated that the ATP pool remains constant during
autotrophic growth on gas and heterotrophic growth on fructose and dissected the underlying
mechanisms.

Recent advancements in high-performance mass spectrometry have greatly enhanced
metabolomic and proteomic interrogation of the metabolic functions underpinningmicrobial sys-
tems (168), including acetogens. Improvements in sample preparation techniques,mass spectrom-
etrymeasurements that exploit highmass accuracies and enhancedmeasurement throughput (with
greater precision), and an expanded bioinformatic tool set provide an unprecedented view of the
wide dynamic range of biomolecules that control metabolic processes. These tools have uncov-
ered a variety of functional details describing acetogenmetabolism, includingH2-drivenmetabolic
rearrangements in gas-fermenting C. autoethanogenum (169), thermodynamic-level control of os-
cillations of acetogenic metabolism in C. autoethanogenum (44), thermodynamic control of ethanol
production in C. ljungdahlii (170), and arginine deiminase pathway boost for C. autoethanogenum
growth (171).

The growth and continued widespread use of multi-omics analyses represent a powerful tool to
facilitate the construction of metabolic models (172). Traditionally, model construction has relied
heavily on either exhaustive fluxomics data sets (173) or literature values for kinetic parameters
(174). However, in recent years, several models have been constructed to capture steady-state fer-
mentation, which instead are sufficiently characterized by multi-omics data sets. These data sets
are generally more economical to obtain and yet, by measuring metabolite, enzyme, and tran-
script levels, perform a similar task to fluxomics in characterizing reaction kinetics (172). These
have included models of acetogen fermentation (175), including one of the first macromolecular
expression (ME) models (176), as well as large-scale models of other, less-characterized organisms
(177), which have been used to provide engineering predictions and recommendations for strain
optimization (172, 174–177). Modeling of the metabolic behavior of cell-free systems presents
another challenge for which multi-omics are particularly well-suited (178). Because these systems
do not readily support a steady state, they necessitate dynamic models with more degrees of free-
dom, which therefore require more data to construct (178). Moreover, because multi-omics can
capture broad system behavior in addition to the behavior of an engineered pathway, models in-
corporating these system-level effects will uncover interactions between the engineered pathway
and native metabolism, which will impact its translation to in vivo cellular metabolism but would
be overlooked with in vitro assays or narrower measurements.

Recent work has seen success in modeling dynamic cell-free metabolism that encompasses
more than 200 reactions (30). However, this work focused on capturing the dynamics of protein
synthesis rather than flux in heterologous pathways and was carried out in E. coli cell-free extracts.
Both of these factors allowed this work to forego proteomics measurements and instead use liter-
ature values for kinetic parameters, most of which have been painstakingly gathered from purified
in vitro kinetic assays, but which have further been shown to be unreliable when translated naïvely
into a model (179). In contrast, research modeling cell-free extracts from nonmodel systems lacks
access to these literature values andmust insteadmake use of detailedmulti-omics data sets, partic-
ularly proteomics and metabolomics. By obtaining system-wide time-course measurements of en-
zyme and metabolite levels, these multi-omics analyses will effectively act as individualized assays
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for each organism and condition, allowing accurate identification of experiment-specific kinetic
parameters.

5.5. Retrobiosynthesis and Pathway Discovery

Retrobiosynthesis enables the identification of novel pathways. On one hand, it can be applied
to identify pathways to a target molecule of interest. One example is the discovery of pathways
that could lead to the production of mono-ethylene glycol from syngas in acetogens (180). On
the other hand, retrobiosynthetic approaches have been developed to generate novel pathways
for carbon fixation, which improve upon natural carbon fixation cycles through more favorable
thermodynamics, higher catalytic rates, and lower energy requirements. Efforts to design these
pathways by hand have been successful; however, this process can be enhanced through computa-
tional approaches (177).Using a set of approximately 5,000 naturally occurring enzymes,Bar-Even
et al. (13, 181, 182) computationally generated a large number of synthetic, C1 fixation pathways
and analyzed their performance based on ATP efficiency, kinetics, and thermodynamic feasibil-
ity. Of these, a malonyl-CoA-oxaloacetate-glyoxylate pathway, which uses phosphoenolpyruvate
carboxylase as the only carboxylation enzyme, has the most promise (182). This same principle
was later used to generate the crotonyl–CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (183).
This cycle was successfully demonstrated in vitro using enzymes from 9 different organisms from
each domain of life, as well as an engineered enzyme. These successes highlight the potential
of computational tools for generating and improving C1 fixation pathways. In fact, the computa-
tionally predicted reductive glycine pathway (181) was recently discovered in a naturally occurring
microorganism, becoming the seventh known CO2 fixation pathway (184).

However, current efforts in designing C1 fixation pathways have relied on knowledge of known
enzymatic reactions.Because up to one-third of all enzymesmay exhibit enzyme-substrate promis-
cuity (185), enzymes could catalyze non-native reactions that are currently unknown in nature. By
considering this larger space of novel reactions, new pathways with even further improved carbon
fixation pathways might be found. Reaction rule–based retrobiosynthetic platforms have been de-
scribed in the literature to achieve this purpose (186, 187). First, reaction rules are abstracted from
known reactions to capture all generalized patterns of enzymatic transformations, which can be
applied on a set of reactants to enumerate novel reactions with the same transformation. Reaction
rules can be strategically selected to reflect the conditions of the intended organisms, for example,
eliminating reactions involving oxygen in obligate anaerobes. Then, rules can be applied itera-
tively to a set of starting compounds to generate a large reaction network, which may contain
many possible pathways for carbon fixation. The resulting predictions require further analysis to
identify the most promising candidates for experimental validation.

Key criteria to evaluate the potential performance of a pathway include thermodynamics, max-
imum theoretical yield, and enzyme availability (188–190). Advances in thermodynamic analysis
have significantly improved pathway assessment in the process of designing new pathways. eQui-
librator, a Gibbs free energy calculator, allows for the calculation of thermodynamic properties of
metabolites, reactions, and pathways to determine potential bottlenecks and infeasible reactions
(191, 192). Flux balance analysis provides a method for predicting the maximum theoretical yield
of a given pathway inserted into the metabolism of an organism (193, 194). Furthermore, tools
have been developed to determine whether there are known enzymes available for predicted re-
actions based on enzyme promiscuity. SimZyme proposes enzymes for novel reactions based on
possible promiscuous enzymes able to carry out the intended transformation (195). The given
criteria of an individual pathway can then be scored and used to give a ranking system to deter-
mine the highest-performing pathways (188). Combining network generation and analysis tools
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provides a powerful method for the design of novel synthetic pathways and offers the opportunity
to create high-performing carbon fixation pathways.

6. SUMMARY AND OUTLOOK

A clear consequence of the deepening climate crisis is that the predictability of agricultural output
throughout the world will deteriorate. This, coupled with the overwhelming need to reduce re-
liance on fossil resources,makes imperative the development and deployment of gas-fermentation
processes that do not rely on the use of specific farmed carbohydrates but allow the recycling of
carbon in waste streams from industrial processes, society, or agriculture. Waste resources from
industry, society, and agriculture are available on a vast scale globally and can displace fossil re-
sources as the basis for the materials, chemicals, and fuels upon which society relies. In the use
of these compositionally varied and variable resources, biological systems are inherently advan-
taged over the traditional thermochemical processes used by the petrochemical industry to pro-
duce fuel and chemical molecules from fossil resources. This advantage stems from both their
inherent capacity to convert chaotic inputs into simple outputs and their elevated tolerance to the
typical contaminating compounds found in these waste streams. These traits allow commercial
production of sustainable molecules in biorefineries at an order-of-magnitude-smaller scale than
is possible today with traditional petrochemical refineries. This is commercially important be-
cause, although waste streams are plentiful globally, they are dispersed, available only at delivered
volumes of hundreds or low thousands of tons per day in any given location. This is in contrast
to fossil feedstocks, which are delivered to refineries at rates of hundreds of thousands of tons per
day. With a reduced need to either harmonize the composition of these waste streams or remove
contaminating molecules to achieve commercial production rates and yields, the capital costs of
industrial bioconversion processes are viable at the reduced scales that match with the availability
of these waste resources at a given location.

Additionally, the microbe chassis used in gas fermentation processes are now programmable,
thanks to the comprehensive suite of synthetic biology tools that have now been reduced to prac-
tice in these chassis. This in turn enables commercial manufacturing of an increasingly diverse
array of sustainable chemical products from waste streams. This ensures not only that the maxi-
mum value can be added to these otherwise low-value resources but also that sustainable solutions
for a full spectrum of chemically different polymers, materials, fibers, solvents, and fuels can be
delivered at an impactful scale.

The challenge we face is that although processes that use fossil resources have been fully ma-
tured over the past 150 years, we are at the start of an urgent journey to implement processes
that deliver the products society demands while also achieving carbon circularity. The first com-
mercial gas fermentation process for ethanol production, built by Beijing Shougang LanzaTech
New Energy Science & Technology Co., Ltd., has been operating successfully for more than two
years. These new manufacturing processes recognize that going forward, products must check
three boxes: They must be functional, cost effective, and sustainable. We must reimagine the by-
products of industry, society, and agriculture as resources and scale the technologies that can ac-
cept these as inputs to deliver sustainable products that avoid the use of fossil resources and further
GHG emissions. The prize for doing so is industrial transformation to manufacturing ecosystems
free of waste streams, and ultimately the ability to directly harness the sustainable electrons as
an energy source for the biosynthesis of products at an unprecedented scale using the ultimate
carbon waste: CO2.
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SUMMARY POINTS

1. Carbon recycling and a circular economy are critical to reducing atmospheric green-
house gas emissions. Gas fermentation offers unique feedstock and product flexibility at
impactful quantities.

2. The gas fermentation field has developed rapidly over the past decade, and the first com-
mercial plant has been operating successfully since 2018.

3. A decade ago, acetogens were considered genetically inaccessible. Today, an array of ge-
netic tools are available to researchers.

4. Gas fermentation has led to the direct production of more than 50 products, with the
first wave of products currently being scaled up and rolled out.

5. CRISPR-Cas9 genome engineering has successfully been applied to gas fermenting mi-
crobes, opening new opportunities, including the use of mutant Cas enzymes for con-
trolled gene expression.

6. Cell-free pathway prototyping can accelerate strain engineering (in particular for non-
model organisms, such as acetogens) for increased product titers and new chemical
products.

7. Integration of multi-omics data sets in the construction of metabolic models provides
engineering predictions and recommendations for acetogen strain optimization.

8. Computational tools for pathway discovery allow for the design of C1 fixation pathways
that improve upon natural carbon fixation cycles.

FUTURE ISSUES

1. To meet any climate and decarbonization targets, the scope of all policy frameworks
should be broad and technology neutral, with a focus on outcomes rather than prescribed
inputs. Policy must focus on sustainable solutions that can deliver carbon savings, and all
possible solutions must be pursued to create a resilient and climate-secure future. Indi-
vidual governments urgently need to set universal carbon tax pricing without exemptions
for large-emission industries. Currently, exemptions are in place in all jurisdictions (ex-
cept Singapore) for industries that present noncompetitive trade status. Binding global
agreements are required to provide an equal economic playing field.

2. Speed to deployment of new technologies is crucial as we face an ever-dwindling carbon
budget and increased impacts of climate change globally. We must deploy sustainable
solutions that can combat climate change in the same way we are approaching COVID
vaccines: by pursuing all possible technology solutions with an eye to the future. This
model has been followed for electric vehicles, enabling this market to grow and driving
down production costs, in parallel with grid transition to 100% renewable electricity. If
electric vehicle development and deployment had been forced to wait until the grid was
sufficiently green to fully realize their anticipated benefits, we would now have decades
to wait for the sector to emerge. Similarly, we do not have the luxury of time before
starting to put steel in the ground for production of new sustainable chemicals and must
support all policy and financial frameworks that allow this sector to flourish.
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3. Gas-fermentation products present significant carbon savings relative to fresh fossil
feedstocks. Locking carbon into chemicals that produce durable goods supports a new
circular carbon economy, resulting in carbon-negative products. When durable goods
reach the end of their useful life, gas fermentation allows this carbon to go back into
the material cycle; thus, waste carbon becomes a thing of the past and is permanently
sequestered into the product cycle.

4. Significant advances have been made in understanding of the energetics and molecular
basis of acetogens over the past decade (see Sections 2.1 and 5.3), yet open questions
remain. For example, the reduction step from methylene-tetrahydrofolate to methyl-
tetrahydrofolate is the most exergonic step in the Wood–Ljungdahl pathway and there-
foremay be associated with energy conservation. In some acetogens,methylene- tetrahy-
drofolate reductase activity has so far been demonstrated only with artificial electron
donors. A complete understanding of energy metabolism is important to develop effec-
tive engineering strategies.

5. Traditionally, most fermentation processes are operated in batch or fed-batch mode,
but there is increased interest in continuous manufacturing, which offers several ad-
vantages. Gas fermentation is typically operated continuously, as the gas must be pro-
vided constantly, and long, continuous campaigns have been demonstrated across scales
(Section 3). Yet in general there is little research around the unique challenges of con-
tinuous over batch fermentations.

6. Low transformation efficiencies in acetogens limit the adaptation of some applications
developed inmodel systems to acetogen and necessitate extra steps. Significant optimiza-
tion has already gone into developing and optimizing more efficient transformation pro-
tocols (see Section 4.1), but new tools, such as methylome analysis, offer opportunities
for improvements and accelerate research. The recent development of anaerobic fluo-
rescencemarkers opens up new high-throughput screening opportunities, but workflows
require development.

7. Although the cell-free system demonstrates a strong correlation with in vivo pathway
performance, future efforts to mimic physiochemical conditions of the organism of in-
terest (for example, cofactors) and various conditions that mimic the phase of fermen-
tation used during biochemical production (for example, batch versus semicontinuous)
could be explored. A key opportunity is the development of anaerobic cell-free systems.

8. Key challenges in retrosynthetic design of pathways are related to the need for bet-
ter cheminformatics algorithms and enzyme activity data. Current cheminformatics al-
gorithms suffer from both not representing the full repertoire of biological reactions
and, at the same time, including unhelpful redundancies and mispredictions. We need
to more efficiently mine known metabolism to abstract generalized reaction rules. Fur-
ther, enzyme substrate promiscuity models are only as good as the data on which they are
trained.Data are available through repositories like the Braunschweig EnzymeDatabase
(BRENDA) but are limited by multiple factors: (a) The data often test many highly
similar compounds, but not more diverse compounds that would inform the breadth of
promiscuity, and (b) negative data (as in enzyme-substrate pairs that have no activity)
are rarely extracted from the primary literature sources. Negative data are essential to
developing predictive models of promiscuity.
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RELATED RESOURCES

1. Department of Energy (DOE) Office of Sciences, Genomic Science Program, Biosystems Design
Research Page that among other projects provides background of the clostridia Foundry for Biosys-
tems Design (cBioFAB), that integrates computational modeling, systems-level analyses, and cell-free
engineering technologies: https://genomicscience.energy.gov/biosystemsdesign/index.shtml;
https://www.energy.gov/science/ber/articles/cell-free-technology-accelerates-industrial-
biotechnology

2. Joint Genome Institute ( JGI) Community Science Program (CSP) page that provide the scientific com-
munity at large with access to high-throughput sequencing and other resources: https://jgi.doe.gov/user-
programs/program-info/csp-overview/

3. In memory of Arren Bar-Even, 1980–2020: https://arren-bar-even.muchloved.com/.
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